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Preface

The	goal	of	data	science	is	to	improve	decision	making	by	basing	decisions	on
insights	extracted	from	large	data	sets.	As	a	field	of	activity,	data	science
encompasses	a	set	of	principles,	problem	definitions,	algorithms,	and	processes
for	extracting	nonobvious	and	useful	patterns	from	large	data	sets.	It	is	closely
related	to	the	fields	of	data	mining	and	machine	learning,	but	it	is	broader	in
scope.	Today,	data	science	drives	decision	making	in	nearly	all	parts	of	modern
societies.	Some	of	the	ways	that	data	science	may	affect	your	daily	life	include
determining	which	advertisements	are	presented	to	you	online;	which	movies,
books,	and	friend	connections	are	recommended	to	you;	which	emails	are
filtered	into	your	spam	folder;	what	offers	you	receive	when	you	renew	your	cell
phone	service;	the	cost	of	your	health	insurance	premium;	the	sequencing	and
timing	of	traffic	lights	in	your	area;	how	the	drugs	you	may	need	were	designed;
and	which	locations	in	your	city	the	police	are	targeting.
The	growth	in	use	of	data	science	across	our	societies	is	driven	by	the

emergence	of	big	data	and	social	media,	the	speedup	in	computing	power,	the
massive	reduction	in	the	cost	of	computer	memory,	and	the	development	of	more
powerful	methods	for	data	analysis	and	modeling,	such	as	deep	learning.
Together	these	factors	mean	that	it	has	never	been	easier	for	organizations	to
gather,	store,	and	process	data.	At	the	same	time,	these	technical	innovations	and
the	broader	application	of	data	science	means	that	the	ethical	challenges	related
to	the	use	of	data	and	individual	privacy	have	never	been	more	pressing.	The
aim	of	this	book	is	to	provide	an	introduction	to	data	science	that	covers	the
essential	elements	of	the	field	at	a	depth	that	provides	a	principled	understanding
of	the	field.
Chapter	1	introduces	the	field	of	data	science	and	provides	a	brief	history	of

how	it	has	developed	and	evolved.	It	also	examines	why	data	science	is
important	today	and	some	of	the	factors	that	are	driving	its	adoption.	The	chapter
finishes	by	reviewing	and	debunking	some	of	the	myths	associated	with	data
science.	Chapter	2	introduces	fundamental	concepts	relating	to	data.	It	also
describes	the	standard	stages	in	a	data	science	project:	business	understanding,
data	understanding,	data	preparation,	modeling,	evaluation,	and	deployment.



Chapter	3	focuses	on	data	infrastructure	and	the	challenges	posed	by	big	data
and	the	integration	of	data	from	multiple	sources.	One	aspect	of	a	typical	data
infrastructure	that	can	be	challenging	is	that	data	in	databases	and	data
warehouses	often	reside	on	servers	different	from	the	servers	used	for	data
analysis.	As	a	consequence,	when	large	data	sets	are	handled,	a	surprisingly
large	amount	of	time	can	be	spent	moving	data	between	the	servers	a	database	or
data	warehouse	are	living	on	and	the	servers	used	for	data	analysis	and	machine
learning.	Chapter	3	begins	by	describing	a	typical	data	science	infrastructure	for
an	organization	and	some	of	the	emerging	solutions	to	the	challenge	of	moving
large	data	sets	within	a	data	infrastructure,	which	include	the	use	of	in-database
machine	learning,	the	use	of	Hadoop	for	data	storage	and	processing,	and	the
development	of	hybrid	database	systems	that	seamlessly	combine	traditional
database	software	and	Hadoop-like	solutions.	The	chapter	concludes	by
highlighting	some	of	the	challenges	in	integrating	data	from	across	an
organization	into	a	unified	representation	that	is	suitable	for	machine	learning.
Chapter	4	introduces	the	field	of	machine	learning	and	explains	some	of	the
most	popular	machine-learning	algorithms	and	models,	including	neural
networks,	deep	learning,	and	decision-tree	models.	Chapter	5	focuses	on	linking
machine-learning	expertise	with	real-world	problems	by	reviewing	a	range	of
standard	business	problems	and	describing	how	they	can	be	solved	by	machine-
learning	solutions.	Chapter	6	reviews	the	ethical	implications	of	data	science,
recent	developments	in	data	regulation,	and	some	of	the	new	computational
approaches	to	preserving	the	privacy	of	individuals	within	the	data	science
process.	Finally,	chapter	7	describes	some	of	the	areas	where	data	science	will
have	a	significant	impact	in	the	near	future	and	sets	out	some	of	the	principles
that	are	important	in	determining	whether	a	data	science	project	will	succeed.
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1 What	Is	Data	Science?

Data	science	encompasses	a	set	of	principles,	problem	definitions,	algorithms,
and	processes	for	extracting	nonobvious	and	useful	patterns	from	large	data	sets.
Many	of	the	elements	of	data	science	have	been	developed	in	related	fields	such
as	machine	learning	and	data	mining.	In	fact,	the	terms	data	science,	machine
learning,	and	data	mining	are	often	used	interchangeably.	The	commonality
across	these	disciplines	is	a	focus	on	improving	decision	making	through	the
analysis	of	data.	However,	although	data	science	borrows	from	these	other	fields,
it	is	broader	in	scope.	Machine	learning	(ML)	focuses	on	the	design	and
evaluation	of	algorithms	for	extracting	patterns	from	data.	Data	mining	generally
deals	with	the	analysis	of	structured	data	and	often	implies	an	emphasis	on
commercial	applications.	Data	science	takes	all	of	these	considerations	into
account	but	also	takes	up	other	challenges,	such	as	the	capturing,	cleaning,	and
transforming	of	unstructured	social	media	and	web	data;	the	use	of	big-data
technologies	to	store	and	process	big,	unstructured	data	sets;	and	questions
related	to	data	ethics	and	regulation.
Using	data	science,	we	can	extract	different	types	of	patterns.	For	example,	we

might	want	to	extract	patterns	that	help	us	to	identify	groups	of	customers
exhibiting	similar	behavior	and	tastes.	In	business	jargon,	this	task	is	known	as
customer	segmentation,	and	in	data	science	terminology	it	is	called	clustering.
Alternatively,	we	might	want	to	extract	a	pattern	that	identifies	products	that	are
frequently	bought	together,	a	process	called	association-rule	mining.	Or	we
might	want	to	extract	patterns	that	identify	strange	or	abnormal	events,	such	as
fraudulent	insurance	claims,	a	process	known	as	anomaly	or	outlier	detection.
Finally,	we	might	want	to	identify	patterns	that	help	us	to	classify	things.	For
example,	the	following	rule	illustrates	what	a	classification	pattern	extracted
from	an	email	data	set	might	look	like:	If	an	email	contains	the	phrase	“Make
money	easily,”	it	is	likely	to	be	a	spam	email.	Identifying	these	types	of
classification	rules	is	known	as	prediction.	The	word	prediction	might	seem	an
odd	choice	because	the	rule	doesn’t	predict	what	will	happen	in	the	future:	the
email	already	is	or	isn’t	a	spam	email.	So	it	is	best	to	think	of	prediction	patterns
as	predicting	the	missing	value	of	an	attribute	rather	than	as	predicting	the



future.	In	this	example,	we	are	predicting	whether	the	email	classification
attribute	should	have	the	value	“spam”	or	not.
Although	we	can	use	data	science	to	extract	different	types	of	patterns,	we

always	want	the	patterns	to	be	both	nonobvious	and	useful.	The	example	email
classification	rule	given	in	the	previous	paragraph	is	so	simple	and	obvious	that
if	it	were	the	only	rule	extracted	by	a	data	science	process,	we	would	be
disappointed.	For	example,	this	email	classification	rule	checks	only	one
attribute	of	an	email:	Does	the	email	contain	the	phrase	“make	money	easily”?	If
a	human	expert	can	easily	create	a	pattern	in	his	or	her	own	mind,	it	is	generally
not	worth	the	time	and	effort	of	using	data	science	to	“discover”	it.	In	general,
data	science	becomes	useful	when	we	have	a	large	number	of	data	examples	and
when	the	patterns	are	too	complex	for	humans	to	discover	and	extract	manually.
As	a	lower	bound,	we	can	take	a	large	number	of	data	examples	to	be	defined	as
more	than	a	human	expert	can	check	easily.	With	regard	to	the	complexity	of	the
patterns,	again,	we	can	define	it	relative	to	human	abilities.	We	humans	are
reasonably	good	at	defining	rules	that	check	one,	two,	or	even	three	attributes
(also	commonly	referred	to	as	features	or	variables),	but	when	we	go	higher	than
three	attributes,	we	can	start	to	struggle	to	handle	the	interactions	between	them.
By	contrast,	data	science	is	often	applied	in	contexts	where	we	want	to	look	for
patterns	among	tens,	hundreds,	thousands,	and,	in	extreme	cases,	millions	of
attributes.
The	patterns	that	we	extract	using	data	science	are	useful	only	if	they	give	us

insight	into	the	problem	that	enables	us	to	do	something	to	help	solve	the
problem.	The	phrase	actionable	insight	is	sometimes	used	in	this	context	to
describe	what	we	want	the	extracted	patterns	to	give	us.	The	term	insight
highlights	that	the	pattern	should	give	us	relevant	information	about	the	problem
that	isn’t	obvious.	The	term	actionable	highlights	that	the	insight	we	get	should
also	be	something	that	we	have	the	capacity	to	use	in	some	way.	For	example,
imagine	we	are	working	for	a	cell	phone	company	that	is	trying	to	solve	a
customer	churn	problem—that	is,	too	many	customers	are	switching	to	other
companies.	One	way	data	science	might	be	used	to	address	this	problem	is	to
extract	patterns	from	the	data	about	previous	customers	that	allow	us	to	identify
current	customers	who	are	churn	risks	and	then	contact	these	customers	and	try
to	persuade	them	to	stay	with	us.	A	pattern	that	enables	us	to	identify	likely
churn	customers	is	useful	to	us	only	if	(a)	the	patterns	identify	the	customers
early	enough	that	we	have	enough	time	to	contact	them	before	they	churn	and
(b)	our	company	is	able	to	put	a	team	in	place	to	contact	them.	Both	of	these
things	are	required	in	order	for	the	company	to	be	able	to	act	on	the	insight	the
patterns	give	us.



A	Brief	History	of	Data	Science

The	term	data	science	has	a	specific	history	dating	back	to	the	1990s.	However,
the	fields	that	it	draws	upon	have	a	much	longer	history.	One	thread	in	this
longer	history	is	the	history	of	data	collection;	another	is	the	history	of	data
analysis.	In	this	section,	we	review	the	main	developments	in	these	threads	and
describe	how	and	why	they	converged	into	the	field	of	data	science.	Of
necessity,	this	review	introduces	new	terminology	as	we	describe	and	name	the
important	technical	innovations	as	they	arose.	For	each	new	term,	we	provide	a
brief	explanation	of	its	meaning;	we	return	to	many	of	these	terms	later	in	the
book	and	provide	a	more	detailed	explanation	of	them.	We	begin	with	a	history
of	data	collection,	then	give	a	history	of	data	analysis,	and,	finally,	cover	the
development	of	data	science.

A	History	of	Data	Gathering
The	earliest	methods	for	recording	data	may	have	been	notches	on	sticks	to	mark
the	passing	of	the	days	or	poles	stuck	in	the	ground	to	mark	sunrise	on	the
solstices.	With	the	development	of	writing,	however,	our	ability	to	record	our
experiences	and	the	events	in	our	world	vastly	increased	the	amount	of	data	we
collected.	The	earliest	form	of	writing	developed	in	Mesopotamia	around	3200
BC	and	was	used	for	commercial	record	keeping.	This	type	of	record	keeping
captures	what	is	known	as	transactional	data.	Transactional	data	include	event
information	such	as	the	sale	of	an	item,	the	issuing	of	an	invoice,	the	delivery	of
goods,	credit	card	payment,	insurance	claims,	and	so	on.	Nontransactional	data,
such	as	demographic	data,	also	have	a	long	history.	The	earliest-known	censuses
took	place	in	pharaonic	Egypt	around	3000	BC.	The	reason	that	early	states	put
so	much	effort	and	resources	into	large	data-collection	operations	was	that	these
states	needed	to	raise	taxes	and	armies,	thus	proving	Benjamin	Franklin’s	claim
that	there	are	only	two	things	certain	in	life:	death	and	taxes.
In	the	past	150	years,	the	development	of	the	electronic	sensor,	the	digitization

of	data,	and	the	invention	of	the	computer	have	contributed	to	a	massive	increase
in	the	amount	of	data	that	are	collected	and	stored.	A	milestone	in	data	collection
and	storage	occurred	in	1970	when	Edgar	F.	Codd	published	a	paper	explaining
the	relational	data	model,	which	was	revolutionary	in	terms	of	setting	out	how
data	were	(at	the	time)	stored,	indexed,	and	retrieved	from	databases.	The
relational	data	model	enabled	users	to	extract	data	from	a	database	using	simple
queries	that	defined	what	data	the	user	wanted	without	requiring	the	user	to



worry	about	the	underlying	structure	of	the	data	or	where	they	were	physically
stored.	Codd’s	paper	provided	the	foundation	for	modern	databases	and	the
development	of	structured	query	language	(SQL),	an	international	standard	for
defining	database	queries.	Relational	databases	store	data	in	tables	with	a
structure	of	one	row	per	instance	and	one	column	per	attribute.	This	structure	is
ideal	for	storing	data	because	it	can	be	decomposed	into	natural	attributes.
Databases	are	the	natural	technology	to	use	for	storing	and	retrieving

structured	transactional	or	operational	data	(i.e.,	the	type	of	data	generated	by	a
company’s	day-to-day	operations).	However,	as	companies	have	become	larger
and	more	automated,	the	amount	and	variety	of	data	generated	by	different	parts
of	these	companies	have	dramatically	increased.	In	the	1990s,	companies
realized	that	although	they	were	accumulating	tremendous	amounts	of	data,	they
were	repeatedly	running	into	difficulties	in	analyzing	those	data.	Part	of	the
problem	was	that	the	data	were	often	stored	in	numerous	separate	databases
within	the	one	organization.	Another	difficulty	was	that	databases	were
optimized	for	storage	and	retrieval	of	data,	activities	characterized	by	high
volumes	of	simple	operations,	such	as	SELECT,	INSERT,	UPDATE,	and
DELETE.	In	order	to	analyze	their	data,	these	companies	needed	technology	that
was	able	to	bring	together	and	reconcile	the	data	from	disparate	databases	and
that	facilitated	more	complex	analytical	data	operations.	This	business	challenge
led	to	the	development	of	data	warehouses.	In	a	data	warehouse,	data	are	taken
from	across	the	organization	and	integrated,	thereby	providing	a	more
comprehensive	data	set	for	analysis.
Over	the	past	couple	of	decades,	our	devices	have	become	mobile	and

networked,	and	many	of	us	now	spend	many	hours	online	every	day	using	social
technologies,	computer	games,	media	platforms,	and	web	search	engines.	These
changes	in	technology	and	how	we	live	have	had	a	dramatic	impact	on	the
amount	of	data	collected.	It	is	estimated	that	the	amount	of	data	collected	over
the	five	millennia	since	the	invention	of	writing	up	to	2003	is	about	5	exabytes.
Since	2013,	humans	generate	and	store	this	same	amount	of	data	every	day.
However,	it	is	not	only	the	amount	of	data	collected	that	has	grown	dramatically
but	also	the	variety	of	data.	Just	consider	the	following	list	of	online	data
sources:	emails,	blogs,	photos,	tweets,	likes,	shares,	web	searches,	video
uploads,	online	purchases,	podcasts.	And	if	we	consider	the	metadata	(data
describing	the	structure	and	properties	of	the	raw	data)	of	these	events,	we	can
begin	to	understand	the	meaning	of	the	term	big	data.	Big	data	are	often	defined
in	terms	of	the	three	Vs:	the	extreme	volume	of	data,	the	variety	of	the	data
types,	and	the	velocity	at	which	the	data	must	be	processed.
The	advent	of	big	data	has	driven	the	development	of	a	range	of	new	database



technologies.	This	new	generation	of	databases	is	often	referred	to	as	“NoSQL
databases.”	They	typically	have	a	simpler	data	model	than	traditional	relational
databases.	A	NoSQL	database	stores	data	as	objects	with	attributes,	using	an
object	notation	language	such	as	the	JavaScript	Object	Notation	(JSON).	The
advantage	of	using	an	object	representation	of	data	(in	contrast	to	a	relational
table-based	model)	is	that	the	set	of	attributes	for	each	object	is	encapsulated
within	the	object,	which	results	in	a	flexible	representation.	For	example,	it	may
be	that	one	of	the	objects	in	the	database,	compared	to	other	objects,	has	only	a
subset	of	attributes.	By	contrast,	in	the	standard	tabular	data	structure	used	by	a
relational	database,	all	the	data	points	should	have	the	same	set	of	attributes	(i.e.,
columns).	This	flexibility	in	object	representation	is	important	in	contexts	where
the	data	cannot	(due	to	variety	or	type)	naturally	be	decomposed	into	a	set	of
structured	attributes.	For	example,	it	can	be	difficult	to	define	the	set	of	attributes
that	should	be	used	to	represent	free	text	(such	as	tweets)	or	images.	However,
although	this	representational	flexibility	allows	us	to	capture	and	store	data	in	a
variety	of	formats,	these	data	still	have	to	be	extracted	into	a	structured	format
before	any	analysis	can	be	performed	on	them.
The	existence	of	big	data	has	also	led	to	the	development	of	new	data-

processing	frameworks.	When	you	are	dealing	with	large	volumes	of	data	at	high
speeds,	it	can	be	useful	from	a	computational	and	speed	perspective	to	distribute
the	data	across	multiple	servers,	process	queries	by	calculating	partial	results	of
a	query	on	each	server,	and	then	merge	these	results	to	generate	the	response	to
the	query.	This	is	the	approach	taken	by	the	MapReduce	framework	on	Hadoop.
In	the	MapReduce	framework,	the	data	and	queries	are	mapped	onto	(or
distributed	across)	multiple	servers,	and	the	partial	results	calculated	on	each
server	are	then	reduced	(merged)	together.

A	History	of	Data	Analysis
Statistics	is	the	branch	of	science	that	deals	with	the	collection	and	analysis	of
data.	The	term	statistics	originally	referred	to	the	collection	and	analysis	of	data
about	the	state,	such	as	demographics	data	or	economic	data.	However,	over
time	the	type	of	data	that	statistical	analysis	was	applied	to	broadened	so	that
today	statistics	is	used	to	analyze	all	types	of	data.	The	simplest	form	of
statistical	analysis	of	data	is	the	summarization	of	a	data	set	in	terms	of	summary
(descriptive)	statistics	(including	measures	of	a	central	tendency,	such	as	the
arithmetic	mean,	or	measures	of	variation,	such	as	the	range).	However,	in	the
seventeenth	and	eighteenth	centuries	the	work	of	people	such	as	Gerolamo
Cardano,	Blaise	Pascal,	Jakob	Bernoulli,	Abraham	de	Moivre,	Thomas	Bayes,



and	Richard	Price	laid	the	foundations	of	probability	theory,	and	through	the
nineteenth	century	many	statisticians	began	to	use	probability	distributions	as
part	of	their	analytic	tool	kit.	These	new	developments	in	mathematics	enabled
statisticians	to	move	beyond	descriptive	statistics	and	to	start	doing	statistical
learning.	Pierre	Simon	de	Laplace	and	Carl	Friedrich	Gauss	are	two	of	the	most
important	and	famous	nineteenth-century	mathematicians,	and	both	made
important	contributions	to	statistical	learning	and	modern	data	science.	Laplace
took	the	intuitions	of	Thomas	Bayes	and	Richard	Price	and	developed	them	into
the	first	version	of	what	we	now	call	Bayes’	Rule.	Gauss,	in	his	search	for	the
missing	dwarf	planet	Ceres,	developed	the	method	of	least	squares,	which
enables	us	to	find	the	best	model	that	fits	a	data	set	such	that	the	error	in	the	fit
minimizes	the	sum	of	squared	differences	between	the	data	points	in	the	data	set
and	the	model.	The	method	of	least	squares	provided	the	foundation	for
statistical	learning	methods	such	as	linear	regression	and	logistic	regression	as
well	as	the	development	of	artificial	neural	network	models	in	artificial
intelligence	(we	will	return	to	least	squares,	regression	analysis,	and	neural
networks	in	chapter	4).
Between	1780	and	1820,	around	the	same	time	that	Laplace	and	Gauss	were

making	their	contributions	to	statistical	learning,	a	Scottish	engineer	named
William	Playfair	was	inventing	statistical	graphics	and	laying	the	foundations	for
modern	data	visualization	and	exploratory	data	analysis.	Playfair	invented	the
line	chart	and	area	chart	for	time-series	data,	the	bar	chart	to	illustrate
comparisons	between	quantities	of	different	categories,	and	the	pie	chart	to
illustrate	proportions	within	a	set.	The	advantage	of	visualizing	quantitative	data
is	that	it	allows	us	to	use	our	powerful	visual	abilities	to	summarize,	compare,
and	interpret	data.	Admittedly,	it	is	difficult	to	visualize	large	(many	data	points)
or	complex	(many	attributes)	data	sets,	but	data	visualization	is	still	an	important
part	of	data	science.	In	particular,	it	is	useful	in	helping	data	scientists	explore
and	understand	the	data	they	are	working	with.	Visualizations	can	also	be	useful
to	communicate	the	results	of	a	data	science	project.	Since	Playfair’s	time,	the
variety	of	data-visualization	graphics	has	steadily	grown,	and	today	there	is
research	ongoing	into	the	development	of	novel	approaches	to	visualize	large,
multidimensional	data	sets.	A	recent	development	is	the	t-distributed	stochastic
neighbor	embedding	(t-SNE)	algorithm,	which	is	a	useful	technique	for	reducing
high-dimensional	data	down	to	two	or	three	dimensions,	thereby	facilitating	the
visualization	of	those	data.
The	developments	in	probability	theory	and	statistics	continued	into	the

twentieth	century.	Karl	Pearson	developed	modern	hypothesis	testing,	and	R.	A.
Fisher	developed	statistical	methods	for	multivariate	analysis	and	introduced	the



idea	of	maximum	likelihood	estimate	into	statistical	inference	as	a	method	to
draw	conclusions	based	on	the	relative	probability	of	events.	The	work	of	Alan
Turing	in	the	Second	World	War	led	to	the	invention	of	the	electronic	computer,
which	had	a	dramatic	impact	on	statistics	because	it	enabled	much	more
complex	statistical	calculations.	Throughout	the	1940s	and	subsequent	decades,
a	number	of	important	computational	models	were	developed	that	are	still
widely	used	in	data	science.	In	1943,	Warren	McCulloch	and	Walter	Pitts
proposed	the	first	mathematical	model	of	a	neural	network.	In	1948,	Claude
Shannon	published	“A	Mathematical	Theory	of	Communication”	and	by	doing
so	founded	information	theory.	In	1951,	Evelyn	Fix	and	Joseph	Hodges
proposed	a	model	for	discriminatory	analysis	(what	would	now	be	called	a
classification	or	pattern-recognition	problem)	that	became	the	basis	for	modern
nearest-neighbor	models.	These	postwar	developments	culminated	in	1956	in
the	establishment	of	the	field	of	artificial	intelligence	at	a	workshop	in
Dartmouth	College.	Even	at	this	early	stage	in	the	development	of	artificial
intelligence,	the	term	machine	learning	was	beginning	to	be	used	to	describe
programs	that	gave	a	computer	the	ability	to	learn	from	data.	In	the	mid-1960s,
three	important	contributions	to	ML	were	made.	In	1965,	Nils	Nilsson’s	book
titled	Learning	Machines	showed	how	neural	networks	could	be	used	to	learn
linear	models	for	classification.	The	following	year,	1966,	Earl	B.	Hunt,	Janet
Marin,	and	Philip	J.	Stone	developed	the	concept-learning	system	framework,
which	was	the	progenitor	of	an	important	family	of	ML	algorithms	that	induced
decision-tree	models	from	data	in	a	top-down	fashion.	Around	the	same	time,	a
number	of	independent	researchers	developed	and	published	early	versions	of
the	k-means	clustering	algorithm,	now	the	standard	algorithm	used	for	data
(customer)	segmentation.
The	field	of	ML	is	at	the	core	of	modern	data	science	because	it	provides

algorithms	that	are	able	to	automatically	analyze	large	data	sets	to	extract
potentially	interesting	and	useful	patterns.	Machine	learning	has	continued	to
develop	and	innovate	right	up	to	the	present	day.	Some	of	the	most	important
developments	include	ensemble	models,	where	predictions	are	made	using	a	set
(or	committee)	of	models,	with	each	model	voting	on	each	query,	and	deep-
learning	neural	networks,	which	have	multiple	(i.e.,	more	than	three)	layers	of
neurons.	These	deeper	layers	in	the	network	are	able	to	discover	and	learn
complex	attribute	representations	(composed	of	multiple,	interacting	input
attributes	that	have	been	processed	by	earlier	layers),	which	in	turn	enable	the
network	to	learn	patterns	that	generalize	across	the	input	data.	Because	of	their
ability	to	learn	complex	attributes,	deep-learning	networks	are	particularly
suitable	to	high-dimensional	data	and	so	have	revolutionized	a	number	of	fields,



including	machine	vision	and	natural-language	processing.
As	we	discussed	in	our	review	of	database	history,	the	early	1970s	marked	the

beginning	of	modern	database	technology	with	Edgar	F.	Codd’s	relational	data
model	and	the	subsequent	explosion	of	data	generation	and	storage	that	led	to
the	development	of	data	warehousing	in	the	1990s	and	more	recently	to	the
phenomenon	of	big	data.	However,	well	before	the	emergence	of	big	data,	in	fact
by	the	late	1980s	and	early	1990s,	the	need	for	a	field	of	research	specifically
targeting	the	analysis	of	these	large	data	sets	was	apparent.	It	was	around	this
time	that	the	term	data	mining	started	to	be	used	in	the	database	communities.
As	we	have	already	discussed,	one	response	to	this	need	was	the	development	of
data	warehouses.	However,	other	database	researchers	responded	by	reaching
out	to	other	research	fields,	and	in	1989	Gregory	Piatetsky-Shapiro	organized	the
first	workshop	on	knowledge	discovery	in	databases	(KDD).	The	announcement
of	the	first	KDD	workshop	neatly	sums	how	the	workshop	focused	on	a
multidisciplinary	approach	to	the	problem	of	analyzing	large	databases:

Knowledge	discovery	in	databases	poses	many	interesting	problems,
especially	when	databases	are	large.	Such	databases	are	usually
accompanied	by	substantial	domain	knowledge	which	can	significantly
facilitate	discovery.	Access	to	large	databases	is	expensive—hence	the	need
for	sampling	and	other	statistical	methods.	Finally,	knowledge	discovery	in
databases	can	benefit	from	many	available	tools	and	techniques	from
several	different	fields	including	expert	systems,	machine	learning,
intelligent	databases,	knowledge	acquisition,	and	statistics.1

In	fact,	the	terms	knowledge	discovery	in	databases	and	data	mining	describe
the	same	concept,	the	distinction	being	that	data	mining	is	more	prevalent	in	the
business	communities	and	KDD	more	prevalent	in	academic	communities.
Today,	these	terms	are	often	used	interchangeably,2	and	many	of	the	top
academic	venues	use	both.	Indeed,	the	premier	academic	conference	in	the	field
is	the	International	Conference	on	Knowledge	Discovery	and	Data	Mining.

The	Emergence	and	Evolution	of	Data	Science
The	term	data	science	came	to	prominence	in	the	late	1990s	in	discussions
relating	to	the	need	for	statisticians	to	join	with	computer	scientists	to	bring
mathematical	rigor	to	the	computational	analysis	of	large	data	sets.	In	1997,	C.	F.
Jeff	Wu’s	public	lecture	“Statistics	=	Data	Science?”	highlighted	a	number	of
promising	trends	for	statistics,	including	the	availability	of	large/complex	data
sets	in	massive	databases	and	the	growing	use	of	computational	algorithms	and



models.	He	concluded	the	lecture	by	calling	for	statistics	to	be	renamed	“data
science.”
In	2001,	William	S.	Cleveland	published	an	action	plan	for	creating	a

university	department	in	the	field	of	data	science	(Cleveland	2001).	The	plan
emphasizes	the	need	for	data	science	to	be	a	partnership	between	mathematics
and	computer	science.	It	also	emphasizes	the	need	for	data	science	to	be
understood	as	a	multidisciplinary	endeavor	and	for	data	scientists	to	learn	how	to
work	and	engage	with	subject-matter	experts.	In	the	same	year,	Leo	Breiman
published	“Statistical	Modeling:	The	Two	Cultures”	(2001).	In	this	paper,
Breiman	characterizes	the	traditional	approach	to	statistics	as	a	data-modeling
culture	that	views	the	primary	goal	of	data	analysis	as	identifying	the	(hidden)
stochastic	data	model	(e.g.,	linear	regression)	that	explains	how	the	data	were
generated.	He	contrasts	this	culture	with	the	algorithmic-modeling	culture	that
focuses	on	using	computer	algorithms	to	create	prediction	models	that	are
accurate	(rather	than	explanatory	in	terms	of	how	the	data	was	generated).
Breiman’s	distinction	between	a	statistical	focus	on	models	that	explain	the	data
versus	an	algorithmic	focus	on	models	that	can	accurately	predict	the	data
highlights	a	core	difference	between	statisticians	and	ML	researchers.	The
debate	between	these	approaches	is	still	ongoing	within	statistics	(see,	for
example,	Shmueli	2010).	In	general,	today	most	data	science	projects	are	more
aligned	with	the	ML	approach	of	building	accurate	prediction	models	and	less
concerned	with	the	statistical	focus	on	explaining	the	data.	So	although	data
science	became	prominent	in	discussions	relating	to	statistics	and	still	borrows
methods	and	models	from	statistics,	it	has	over	time	developed	its	own	distinct
approach	to	data	analysis.
Since	2001,	the	concept	of	data	science	has	broadened	well	beyond	that	of	a

redefinition	of	statistics.	For	example,	over	the	past	10	years	there	has	been	a
tremendous	growth	in	the	amount	of	the	data	generated	by	online	activity	(online
retail,	social	media,	and	online	entertainment).	Gathering	and	preparing	these
data	for	use	in	data	science	projects	has	resulted	in	the	need	for	data	scientists	to
develop	the	programming	and	hacking	skills	to	scrape,	merge,	and	clean	data
(sometimes	unstructured	data)	from	external	web	sources.	Also,	the	emergence
of	big	data	has	meant	that	data	scientists	need	to	be	able	to	work	with	big-data
technologies,	such	as	Hadoop.	In	fact,	today	the	role	of	a	data	scientist	has
become	so	broad	that	there	is	an	ongoing	debate	regarding	how	to	define	the
expertise	and	skills	required	to	carry	out	this	role.3	It	is,	however,	possible	to	list
the	expertise	and	skills	that	most	people	would	agree	are	relevant	to	the	role,
which	are	shown	in	figure	1.	It	is	difficult	for	an	individual	to	master	all	of	these
areas,	and,	indeed,	most	data	scientists	usually	have	in-depth	knowledge	and	real



expertise	in	just	a	subset	of	them.	However,	it	is	important	to	understand	and	be
aware	of	each	area’s	contribution	to	a	data	science	project.

Figure	1	A	skills-set	desideratum	for	a	data	scientist.

Data	scientists	should	have	some	domain	expertise.	Most	data	science	projects
begin	with	a	real-world,	domain-specific	problem	and	the	need	to	design	a	data-
driven	solution	to	this	problem.	As	a	result,	it	is	important	for	a	data	scientist	to
have	enough	domain	expertise	that	they	understand	the	problem,	why	it	is
important,	and	how	a	data	science	solution	to	the	problem	might	fit	into	an
organization’s	processes.	This	domain	expertise	guides	the	data	scientist	as	she
works	toward	identifying	an	optimized	solution.	It	also	enables	her	to	engage
with	real	domain	experts	in	a	meaningful	way	so	that	she	can	illicit	and
understand	relevant	knowledge	about	the	underlying	problem.	Also,	having
some	experience	of	the	project	domain	allows	the	data	scientist	to	bring	her
experiences	from	working	on	similar	projects	in	the	same	and	related	domains	to
bear	on	defining	the	project	focus	and	scope.
Data	are	at	the	center	of	all	data	science	projects.	However,	the	fact	that	an

organization	has	access	to	data	does	not	mean	that	it	can	legally	or	should
ethically	use	the	data.	In	most	jurisdictions,	there	is	antidiscrimination	and
personal-data-protection	legislation	that	regulates	and	controls	the	use	of	data



usage.	As	a	result,	a	data	scientist	needs	to	understand	these	regulations	and	also,
more	broadly,	to	have	an	ethical	understanding	of	the	implications	of	his	work	if
he	is	to	use	data	legally	and	appropriately.	We	return	to	this	topic	in	chapter	6,
where	we	discuss	the	legal	regulations	on	data	usage	and	the	ethical	questions
related	to	data	science.
In	most	organizations,	a	significant	portion	of	the	data	will	come	from	the

databases	in	the	organization.	Furthermore,	as	the	data	architecture	of	an
organization	grows,	data	science	projects	will	start	incorporating	data	from	a
variety	of	other	data	sources,	which	are	commonly	referred	to	as	“big-data
sources.”	The	data	in	these	data	sources	can	exist	in	a	variety	of	different
formats,	generally	a	database	of	some	form—relational,	NoSQL,	or	Hadoop.	All
of	the	data	in	these	various	databases	and	data	sources	will	need	to	be	integrated,
cleansed,	transformed,	normalized,	and	so	on.	These	tasks	go	by	many	names,
such	as	extraction,	transformation,	and	load,	“data	munging,”	“data	wrangling,”
“data	fusion,”	“data	crunching,”	and	so	on.	Like	source	data,	the	data	generated
from	data	science	activities	also	need	to	be	stored	and	managed.	Again,	a
database	is	the	typical	storage	location	for	the	data	generated	by	these	activities
because	they	can	then	be	easily	distributed	and	shared	with	different	parts	of	the
organization.	As	a	consequence,	data	scientists	need	to	have	the	skills	to
interface	with	and	manipulate	data	in	databases.
A	range	of	computer	science	skills	and	tools	allows	data	scientists	to	work

with	big	data	and	to	process	it	into	new,	meaningful	information.	High-
performance	computing	(HPC)	involves	aggregating	computing	power	to	deliver
higher	performance	than	one	can	get	from	a	stand-alone	computer.	Many	data
science	projects	work	with	a	very	large	data	set	and	ML	algorithms	that	are
computationally	expensive.	In	these	situations,	having	the	skills	required	to
access	and	use	HPC	resources	is	important.	Beyond	HPC,	we	have	already
mentioned	the	need	for	data	scientists	to	be	able	to	scrap,	clean,	and	integrate
web	data	as	well	as	handle	and	process	unstructured	text	and	images.
Furthermore,	a	data	scientist	may	also	end	up	writing	in-house	applications	to
perform	a	specific	task	or	altering	an	existing	application	to	tune	it	to	the	data
and	domain	being	processed.	Finally,	computer	science	skills	are	also	required	to
be	able	to	understand	and	develop	the	ML	models	and	integrate	them	into	the
production	or	analytic	or	back-end	applications	in	an	organization.
Presenting	data	in	a	graphical	format	makes	it	much	easier	to	see	and

understand	what	is	happening	with	the	data.	Data	visualization	applies	to	all
phases	of	the	data	science	process.	When	data	are	inspected	in	tabular	form,	it	is
easy	to	miss	things	such	as	outliers	or	trends	in	distributions	or	subtle	changes	in
the	data	through	time.	However,	when	data	are	presented	in	the	correct	graphical



form,	these	aspects	of	the	data	can	pop	out.	Data	visualization	is	an	important
and	growing	field,	and	we	recommend	two	books,	The	Visual	Display	of
Quantitative	Information	by	Edward	Tufte	(2001)	and	Show	Me	the	Numbers:
Designing	Tables	and	Graphs	to	Enlighten	by	Stephen	Few	(2012)	as	excellent
introductions	to	the	principles	and	techniques	of	effective	data	visualization.
Methods	from	statistics	and	probability	are	used	throughout	the	data	science

process,	from	the	initial	gathering	and	investigation	of	the	data	right	through	to
the	comparing	of	the	results	of	different	models	and	analyses	produced	during
the	project.	Machine	learning	involves	using	a	variety	of	advanced	statistical	and
computing	techniques	to	process	data	to	find	patterns.	The	data	scientist	who	is
involved	in	the	applied	aspects	of	ML	does	not	have	to	write	his	own	versions	of
ML	algorithms.	By	understanding	the	ML	algorithms,	what	they	can	be	used	for,
what	the	results	they	generate	mean,	and	what	type	of	data	particular	algorithms
can	be	run	on,	the	data	scientist	can	consider	the	ML	algorithms	as	a	gray	box.
This	allows	him	to	concentrate	on	the	applied	aspects	of	data	science	and	to	test
the	various	ML	algorithms	to	see	which	ones	work	best	for	the	scenario	and	data
he	is	concerned	with.
Finally,	a	key	aspect	of	being	a	successful	data	scientist	is	being	able	to

communicate	the	story	in	the	data.	This	story	might	uncover	the	insight	that	the
analysis	of	the	data	has	revealed	or	how	the	models	created	during	a	project	fit
into	an	organization’s	processes	and	the	likely	impact	they	will	have	on	the
organization’s	functioning.	There	is	no	point	executing	a	brilliant	data	science
project	unless	the	outputs	from	it	are	used	and	the	results	are	communicated	in
such	a	way	that	colleagues	with	a	nontechnical	background	can	understand	them
and	have	confidence	in	them.

Where	Is	Data	Science	Used?

Data	science	drives	decision	making	in	nearly	all	parts	of	modern	societies.	In
this	section,	we	describe	three	case	studies	that	illustrate	the	impact	of	data
science:	consumer	companies	using	data	science	for	sales	and	marketing;
governments	using	data	science	to	improve	health,	criminal	justice,	and	urban
planning;	and	professional	sporting	franchises	using	data	science	in	player
recruitment.

Data	Science	in	Sales	and	Marketing
Walmart	has	access	to	large	data	sets	about	its	customers’	preferences	by	using



point-of-sale	systems,	by	tracking	customer	behavior	on	the	Walmart	website,
and	by	tracking	social	media	commentary	about	Walmart	and	its	products.	For
more	than	a	decade,	Walmart	has	been	using	data	science	to	optimize	the	stock
levels	in	stores,	a	well-known	example	being	when	it	restocked	strawberry	Pop-
Tarts	in	stores	in	the	path	of	Hurricane	Francis	in	2004	based	on	an	analysis	of
sales	data	preceding	Hurricane	Charley,	which	had	struck	a	few	weeks	earlier.
More	recently,	Walmart	has	used	data	science	to	drive	its	retail	revenues	in	terms
of	introducing	new	products	based	on	analyzing	social	media	trends,	analyzing
credit	card	activity	to	make	product	recommendations	to	customers,	and
optimizing	and	personalizing	customers’	online	experience	on	the	Walmart
website.	Walmart	attributes	an	increase	of	10	to	15	percent	in	online	sales	to	data
science	optimizations	(DeZyre	2015).
The	equivalent	of	up-selling	and	cross-selling	in	the	online	world	is	the

“recommender	system.”	If	you	have	watched	a	movie	on	Netflix	or	purchased	an
item	on	Amazon,	you	will	know	that	these	websites	use	the	data	they	collect	to
provide	suggestions	for	what	you	should	watch	or	buy	next.	These	recommender
systems	can	be	designed	to	guide	you	in	different	ways:	some	guide	you	toward
blockbusters	and	best	sellers,	whereas	others	guide	you	toward	niche	items	that
are	specific	to	your	tastes.	Chris	Anderson’s	book	The	Long	Tail	(2008)	argues
that	as	production	and	distribution	get	less	expensive,	markets	shift	from	selling
large	amounts	of	a	small	number	of	hit	items	to	selling	smaller	amounts	of	a
larger	number	of	niche	items.	This	trade-off	between	driving	sales	of	hit	or	niche
products	is	a	fundamental	design	decision	for	a	recommender	system	and	affects
the	data	science	algorithms	used	to	implement	these	systems.

Governments	Using	Data	Science
In	recent	years,	governments	have	recognized	the	advantages	of	adopting	data
science.	In	2015,	for	example,	the	US	government	appointed	Dr.	D.	J.	Patil	as
the	first	chief	data	scientist.	Some	of	the	largest	data	science	initiatives
spearheaded	by	the	US	government	have	been	in	health.	Data	science	is	at	the
core	of	the	Cancer	Moonshot4	and	Precision	Medicine	Initiatives.	The	Precision
Medicine	Initiative	combines	human	genome	sequencing	and	data	science	to
design	drugs	for	individual	patients.	One	part	of	the	initiative	is	the	All	of	Us
program,5	which	is	gathering	environment,	lifestyle,	and	biological	data	from
more	than	one	million	volunteers	to	create	the	world’s	biggest	data	sets	for
precision	medicine.	Data	science	is	also	revolutionizing	how	we	organize	our
cities:	it	is	used	to	track,	analyze,	and	control	environmental,	energy,	and
transport	systems	and	to	inform	long-term	urban	planning	(Kitchin	2014a).	We



return	to	health	and	smart	cities	in	chapter	7	when	we	discuss	how	data	science
will	become	even	more	important	in	our	lives	over	the	coming	decades.
The	US	government’s	Police	Data	Initiative6	focuses	on	using	data	science	to

help	police	departments	understand	the	needs	of	their	communities.	Data	science
is	also	being	used	to	predict	crime	hot	spots	and	recidivism.	However,	civil
liberty	groups	have	criticized	some	of	the	uses	of	data	science	in	criminal	justice.
In	chapter	6,	we	discuss	the	privacy	and	ethics	questions	raised	by	data	science,
and	one	of	the	interesting	factors	in	this	discussion	is	that	the	opinions	people
have	in	relation	to	personal	privacy	and	data	science	vary	from	one	domain	to
the	next.	Many	people	who	are	happy	for	their	personal	data	to	be	used	for
publicly	funded	medical	research	have	very	different	opinions	when	it	comes	to
the	use	of	personal	data	for	policing	and	criminal	justice.	In	chapter	6,	we	also
discuss	the	use	of	personal	data	and	data	science	in	determining	life,	health,	car,
home,	and	travel	insurance	premiums.

Data	Science	in	Professional	Sports
The	movie	Moneyball	(Bennett	Miller,	2011),	starring	Brad	Pitt,	showcases	the
growing	use	of	data	science	in	modern	sports.	The	movie	is	based	on	the	book	of
the	same	title	(Lewis	2004),	which	tells	the	true	story	of	how	the	Oakland	A’s
baseball	team	used	data	science	to	improve	its	player	recruitment.	The	team’s
management	identified	that	a	player’s	on-base	percentage	and	slugging
percentage	statistics	were	more	informative	indicators	of	offensive	success	than
the	statistics	traditionally	emphasized	in	baseball,	such	as	a	player’s	batting
average.	This	insight	enabled	the	Oakland	A’s	to	recruit	a	roster	of	undervalued
players	and	outperform	its	budget.	The	Oakland	A’s	success	with	data	science
has	revolutionized	baseball,	with	most	other	baseball	teams	now	integrating
similar	data-driven	strategies	into	their	recruitment	processes.
The	moneyball	story	is	a	very	clear	example	of	how	data	science	can	give	an

organization	an	advantage	in	a	competitive	market	space.	However,	from	a	pure
data	science	perspective	perhaps	the	most	important	aspect	of	the	moneyball
story	is	that	it	highlights	that	sometimes	the	primary	value	of	data	science	is	the
identification	of	informative	attributes.	A	common	belief	is	that	the	value	of	data
science	is	in	the	models	created	through	the	process.	However,	once	we	know
the	important	attributes	in	a	domain,	it	is	very	easy	to	create	data-driven	models.
The	key	to	success	is	getting	the	right	data	and	finding	the	right	attributes.	In
Freakonomics:	A	Rogue	Economist	Explores	the	Hidden	Side	of	Everything,
Steven	D.	Levitt	and	Stephen	Dubner	illustrate	the	importance	of	this
observation	across	a	wide	range	of	problems.	As	they	put	it,	the	key	to



understanding	modern	life	is	“knowing	what	to	measure	and	how	to	measure	it”
(2009,	14).	Using	data	science,	we	can	uncover	the	important	patterns	in	a	data
set,	and	these	patterns	can	reveal	the	important	attributes	in	the	domain.	The
reason	why	data	science	is	used	in	so	many	domains	is	that	it	doesn’t	matter
what	the	problem	domain	is:	if	the	right	data	are	available	and	the	problem	can
be	clearly	defined,	then	data	science	can	help.

Why	Now?

A	number	of	factors	have	contributed	to	the	recent	growth	of	data	science.	As	we
have	already	touched	upon,	the	emergence	of	big	data	has	been	driven	by	the
relative	ease	with	which	organizations	can	gather	data.	Be	it	through	point-of-
sales	transaction	records,	clicks	on	online	platforms,	social	media	posts,	apps	on
smart	phones,	or	myriad	other	channels,	companies	can	now	build	much	richer
profiles	of	individual	customers.	Another	factor	is	the	commoditization	of	data
storage	with	economies	of	scale,	making	it	less	expensive	than	ever	before	to
store	data.	There	has	also	been	tremendous	growth	in	computer	power.	Graphics
cards	and	graphical	processing	units	(GPUs)	were	originally	developed	to	do	fast
graphics	rendering	for	computer	games.	The	distinctive	feature	of	GPUs	is	that
they	can	carry	out	fast	matrix	multiplications.	However,	matrix	multiplications
are	useful	not	only	for	graphics	rendering	but	also	for	ML.	In	recent	years,	GPUs
have	been	adapted	and	optimized	for	ML	use,	which	has	contributed	to	large
speedups	in	data	processing	and	model	training.	User-friendly	data	science	tools
have	also	become	available	and	lowered	the	barriers	to	entry	into	data	science.
Taken	together,	these	developments	mean	that	it	has	never	been	easier	to	collect,
store,	and	process	data.
In	the	past	10	years	there	have	also	been	major	advances	in	ML.	In	particular,

deep	learning	has	emerged	and	has	revolutionized	how	computers	can	process
language	and	image	data.	The	term	deep	learning	describes	a	family	of	neural
network	models	with	multiple	layers	of	units	in	the	network.	Neural	networks
have	been	around	since	the	1940s,	but	they	work	best	with	large,	complex	data
sets	and	take	a	great	deal	of	computing	resources	to	train.	So	the	emergence	of
deep	learning	is	connected	with	growth	in	big	data	and	computing	power.	It	is
not	an	exaggeration	to	describe	the	impact	of	deep	learning	across	a	range	of
domains	as	nothing	less	than	extraordinary.
DeepMind’s	computer	program	AlphaGo7	is	an	excellent	example	of	how	deep

learning	has	transformed	a	field	of	research.	Go	is	a	board	game	that	originated



in	China	3,000	years	ago.	The	rules	of	Go	are	much	simpler	than	chess;	players
take	turns	placing	pieces	on	a	board	with	the	goal	of	capturing	their	opponent’s
pieces	or	surrounding	empty	territory.	However,	the	simplicity	of	the	rules	and
the	fact	that	Go	uses	a	larger	board	means	that	there	are	many	more	possible
board	configurations	in	Go	then	there	are	in	chess.	In	fact,	there	are	more
possible	board	configurations	for	Go	than	there	are	atoms	in	the	universe.	This
makes	Go	much	more	difficult	than	chess	for	computers	because	of	its	much
larger	search	space	and	difficulty	in	evaluating	each	of	these	possible	board
configurations.	The	DeepMind	team	used	deep-learning	models	to	enable
AlphaGo	to	evaluate	board	configurations	and	to	select	the	next	move	to	make.
The	result	was	that	AlphaGo	became	the	first	computer	program	to	beat	a
professional	Go	player,	and	in	March	2016	AlphaGo	beat	Led	Sedol,	the	18-time
Go	world	champion,	in	a	match	watched	by	more	than	200	million	people
worldwide.	To	put	the	impact	of	deep	learning	on	Go	in	context,	as	recently	as
2009	the	best	Go	computer	program	in	the	world	was	rated	at	the	low	end	of
advanced	amateur;	seven	years	later	AlphaGo	beat	the	world	champion.	In	2016,
an	article	describing	the	deep-learning	algorithms	behind	AlphaGo	was
published	in	the	world’s	most	prestigious	academic	science	journal,	Nature
(Silver,	Huang,	Maddison,	et	al.	2016).
Deep	learning	has	also	had	a	massive	impact	on	a	range	of	high-profile

consumer	technologies.	Facebook	now	uses	deep	learning	for	face	recognition
and	to	analyze	text	in	order	to	advertise	directly	to	individuals	based	on	their
online	conversations.	Both	Google	and	Baidu	use	deep	learning	for	image
recognition,	captioning	and	search,	and	machine	translation.	Apple’s	virtual
assistant	Siri,	Amazon’s	Alexa,	Microsoft’s	Cortana,	and	Samsung’s	Bixby	use
speech	recognition	based	on	deep	learning.	Huawei	is	currently	developing	a
virtual	assistant	for	the	Chinese	market,	and	it,	too,	will	use	deep-learning
speech	recognition.	In	chapter	4,	“Machine	Learning	101,”	we	describe	neural
networks	and	deep	learning	in	more	detail.	However,	although	deep	learning	is
an	important	technical	development,	perhaps	what	is	most	significant	about	it	in
terms	of	the	growth	of	data	science	is	the	increased	awareness	of	the	capabilities
and	benefits	of	data	science	and	organization	buy-in	that	has	resulted	from	these
high-profile	success	stories.

Myths	about	Data	Science

Data	science	has	many	advantages	for	modern	organizations,	but	there	is	also	a



great	deal	of	hype	around	it,	so	we	should	understand	what	its	limitations	are.
One	of	the	biggest	myths	is	the	belief	that	data	science	is	an	autonomous	process
that	we	can	let	loose	on	our	data	to	find	the	answers	to	our	problems.	In	reality,
data	science	requires	skilled	human	oversight	throughout	the	different	stages	of
the	process.	Humans	analysts	are	needed	to	frame	the	problem,	to	design	and
prepare	the	data,	to	select	which	ML	algorithms	are	most	appropriate,	to
critically	interpret	the	results	of	the	analysis,	and	to	plan	the	appropriate	action	to
take	based	on	the	insight(s)	the	analysis	has	revealed.	Without	skilled	human
oversight,	a	data	science	project	will	fail	to	meet	its	targets.	The	best	data
science	outcomes	occur	when	human	expertise	and	computer	power	work
together,	as	Gordon	Linoff	and	Michael	Berry	put	it:	“Data	mining	lets
computers	do	what	they	do	best—dig	through	lots	of	data.	This,	in	turn,	lets
people	do	what	people	do	best,	which	is	to	set	up	the	problem	and	understand	the
results”	(2011,	3).
The	widespread	and	growing	use	of	data	science	means	that	today	the	biggest

data	science	challenge	for	many	organizations	is	locating	qualified	human
analysts	and	hiring	them.	Human	talent	in	data	science	is	at	a	premium,	and
sourcing	this	talent	is	currently	the	main	bottleneck	in	the	adoption	of	data
science.	To	put	this	talent	shortfall	in	context,	in	2011	a	McKinsey	Global
Institute	report	projected	a	shortfall	in	the	United	States	of	between	140,000	and
190,000	people	with	data	science	and	analytics	skills	and	an	even	larger	shortfall
of	1.5	million	managers	with	the	ability	to	understand	data	science	and	analytics
processes	at	a	level	that	will	enable	them	to	interrogate	and	interpret	the	results
of	data	science	appropriately	(Manyika,	Chui,	Brown,	et	al.	2011).	Five	years	on,
in	their	2016	report,	the	institute	remained	convinced	that	data	science	has	huge
untapped	value	potential	across	an	expanding	range	of	applications	but	that	the
talent	shortfall	will	remain,	with	a	predicted	shortfall	of	250,000	data	scientists
in	the	near	term	(Henke,	Bughin,	Chui,	et	al.	2016).
The	second	big	myth	of	data	science	is	that	every	data	science	project	needs

big	data	and	needs	to	use	deep	learning.	In	general,	having	more	data	helps,	but
having	the	right	data	is	the	more	important	requirement.	Data	science	projects
are	frequently	carried	out	in	organizations	that	have	significantly	less	resources
in	terms	of	data	and	computing	power	than	Google,	Baidu,	or	Microsoft.
Examples	indicative	of	the	scale	of	smaller	data	science	projects	include	claim
prediction	in	an	insurance	company	that	processes	around	100	claims	a	month;
student	dropout	prediction	for	a	university	with	less	than	10,000	students;
membership	dropout	prediction	for	a	union	with	several	thousand	members.	So
an	organization	doesn’t	need	to	be	handling	terabytes	of	data	or	to	have	massive
computing	resources	at	its	disposal	to	benefit	from	data	science.



A	third	data	science	myth	is	that	modern	data	science	software	is	easy	to	use,
and	so	data	science	is	easy	to	do.	It	is	true	that	data	science	software	has	become
more	user-friendly.	However,	this	ease	of	use	can	hide	the	fact	that	doing	data
science	properly	requires	both	appropriate	domain	knowledge	and	the	expertise
regarding	the	properties	of	the	data	and	the	assumptions	underpinning	the
different	ML	algorithms.	In	fact,	it	has	never	been	easier	to	do	data	science
badly.	Like	everything	else	in	life,	if	you	don’t	understand	what	you	are	doing
when	you	do	data	science,	you	are	going	to	make	mistakes.	The	danger	with	data
science	is	that	people	can	be	intimidated	by	the	technology	and	believe	whatever
results	the	software	presents	to	them.	They	may,	however,	have	unwittingly
framed	the	problem	in	the	wrong	way,	entered	the	wrong	data,	or	used	analysis
techniques	with	inappropriate	assumptions.	So	the	results	the	software	presents
are	likely	to	be	the	answer	to	the	wrong	question	or	to	be	based	on	the	wrong
data	or	the	outcome	of	the	wrong	calculation.
The	last	myth	about	data	science	we	want	to	mention	here	is	the	belief	that

data	science	pays	for	itself	quickly.	The	truth	of	this	belief	depends	on	the
context	of	the	organization.	Adopting	data	science	can	require	significant
investment	in	terms	of	developing	data	infrastructure	and	hiring	staff	with	data
science	expertise.	Furthermore,	data	science	will	not	give	positive	results	on
every	project.	Sometimes	there	is	no	hidden	gem	of	insight	in	the	data,	and
sometimes	the	organization	is	not	in	a	position	to	act	on	the	insight	the	analysis
has	revealed.	However,	in	contexts	where	there	is	a	well-understood	business
problem	and	the	appropriate	data	and	human	expertise	are	available,	then	data
science	can	(often)	provide	the	actionable	insight	that	gives	an	organization	the
competitive	advantage	it	needs	to	succeed.

Notes

1. Quote	taken	from	the	call	for	participation	sent	out	for	the	KDD	workshop	in
1989.

2. Some	practitioners	do	distinguish	between	data	mining	and	KDD	by	viewing
data	mining	as	a	subfield	of	KDD	or	a	particular	approach	to	KDD.

3. For	a	recent	review	of	this	debate,	see	Battle	of	the	Data	Science	Venn
Diagrams	(Taylor	2016).



4. For	more	on	the	Cancer	Moonshot	Initiative,	see
https://www.cancer.gov/research/key-initiatives.

5. For	more	on	the	All	of	Us	program	in	the	Precision	Medicine	Initiative,	see
https://allofus.nih.gov.

6. For	more	on	the	Police	Data	Initiative,	see
https://www.policedatainitiative.org.

7. For	more	on	AlphaGo,	see	https://deepmind.com/research/alphago.

https://www.cancer.gov/research/key-initiatives
https://allofus.nih.gov
https://www.policedatainitiative.org
https://deepmind.com/research/alphago


2 What	Are	Data,	and	What	Is	a	Data	Set?

As	its	name	suggests,	data	science	is	fundamentally	dependent	on	data.	In	its
most	basic	form,	a	datum	or	a	piece	of	information	is	an	abstraction	of	a	real-
world	entity	(person,	object,	or	event).	The	terms	variable,	feature,	and	attribute
are	often	used	interchangeably	to	denote	an	individual	abstraction.	Each	entity	is
typically	described	by	a	number	of	attributes.	For	example,	a	book	might	have
the	following	attributes:	author,	title,	topic,	genre,	publisher,	price,	date
published,	word	count,	number	of	chapters,	number	of	pages,	edition,	ISBN,	and
so	on.
A	data	set	consists	of	the	data	relating	to	a	collection	of	entities,	with	each

entity	described	in	terms	of	a	set	of	attributes.	In	its	most	basic	form,1	a	data	set
is	organized	in	an	n	*	m	data	matrix	called	the	analytics	record,	where	n	is	the
number	of	entities	(rows)	and	m	is	the	number	of	attributes	(columns).	In	data
science,	the	terms	data	set	and	analytics	record	are	often	used	interchangeably,
with	the	analytics	record	being	a	particular	representation	of	a	data	set.	Table	1
illustrates	an	analytics	record	for	a	data	set	of	classic	books.	Each	row	in	the
table	describes	one	book.	The	terms	instance,	example,	entity,	object,	case,
individual,	and	record	are	used	in	data	science	literature	to	refer	to	a	row.	So	a
data	set	contains	a	set	of	instances,	and	each	instance	is	described	by	a	set	of
attributes.

Table	1	A	Data	Set	of	Classic	Books

The	construction	of	the	analytics	record	is	a	prerequisite	of	doing	data	science.
In	fact,	the	majority	of	the	time	and	effort	in	data	science	projects	is	spent	on
creating,	cleaning,	and	updating	the	analytics	record.	The	analytics	record	is



often	constructed	by	merging	information	from	many	different	sources:	data	may
have	to	be	extracted	from	multiple	databases,	data	warehouses,	or	computer	files
in	different	formats	(e.g.,	spreadsheets	or	csv	files)	or	scraped	from	the	web	or
social	media	streams.
Four	books	are	listed	in	the	data	set	in	table	1.	Excluding	the	ID	attribute—

which	is	simply	a	label	for	each	row	and	hence	is	not	useful	for	analysis—each
book	is	described	using	six	attributes:	title,	author,	year,	cover,	edition,	and	price.
We	could	have	included	many	more	attributes	for	each	book,	but,	as	is	typical	of
data	science	projects,	we	needed	to	make	a	choice	when	we	were	designing	the
data	set.	In	this	instance,	we	were	constrained	by	the	size	of	the	page	and	the
number	of	attributes	we	could	fit	onto	it.	In	most	data	science	projects,	however,
the	constraints	relate	to	what	attributes	we	can	actually	gather	and	what
attributes	we	believe,	based	on	our	domain	knowledge,	are	relevant	to	the
problem	we	are	trying	to	solve.	Including	extra	attributes	in	a	data	set	does	not
come	without	cost.	First,	there	is	the	extra	time	and	effort	in	collecting	and
quality	checking	the	attribute	information	for	each	instance	in	the	data	set	and
integrating	these	data	into	the	analytics	record.	Second,	including	irrelevant	or
redundant	attributes	can	have	a	negative	effect	on	the	performance	of	many	of
the	algorithms	used	to	analyze	data.	Including	many	attributes	in	a	data	set
increases	the	probability	that	an	algorithm	will	find	irrelevant	or	spurious
patterns	in	the	data	that	appear	to	be	statistically	significant	only	because	of	the
particular	sample	of	instances	in	the	data	set.	The	problem	of	how	to	choose	the
correct	attribute(s)	is	a	challenge	faced	by	all	data	science	projects,	and
sometimes	it	comes	down	to	an	iterative	process	of	trial-and-error	experiments
where	each	iteration	checks	the	results	achieved	using	different	subsets	of
attributes.
There	are	many	different	types	of	attributes,	and	for	each	attribute	type

different	sorts	of	analysis	are	appropriate.	So	understanding	and	recognizing
different	attribute	types	is	a	fundamental	skill	for	a	data	scientist.	The	standard
types	are	numeric,	nominal,	and	ordinal.	Numeric	attributes	describe	measurable
quantities	that	are	represented	using	integer	or	real	values.	Numeric	attributes
can	be	measured	on	either	an	interval	scale	or	a	ratio	scale.	Interval	attributes
are	measured	on	a	scale	with	a	fixed	but	arbitrary	interval	and	arbitrary	origin—
for	example,	date	and	time	measurements.	It	is	appropriate	to	apply	ordering	and
subtraction	operations	to	interval	attributes,	but	other	arithmetic	operations	(such
as	multiplication	and	division)	are	not	appropriate.	Ratio	scales	are	similar	to
interval	scales,	but	the	scale	of	measurement	possesses	a	true-zero	origin.	A
value	of	zero	indicates	that	none	of	the	quantity	is	being	measured.	A
consequence	of	a	ratio	scale	having	a	true-zero	origin	is	that	we	can	describe	a



value	on	a	ratio	scale	as	being	a	multiple	(or	ratio)	of	another	value.	Temperature
is	a	useful	example	for	distinguishing	between	interval	and	ratio	scales.2	A
temperature	measurement	on	the	Celsius	or	Fahrenheit	scale	is	an	interval
measurement	because	a	0	value	on	either	of	these	scales	does	not	indicate	zero
heat.	So	although	we	can	compute	differences	between	temperatures	on	these
scales	and	compare	these	differences,	we	cannot	say	that	a	temperature	of	20°
Celsius	is	twice	as	warm	as	10°	Celsius.	By	contrast,	a	temperature	measurement
in	Kelvins	is	on	a	ratio	scale	because	0	K	(absolute	zero)	is	the	temperature	at
which	all	thermal	motion	ceases.	Other	common	examples	of	ratio-scale
measurements	include	money	quantities,	weight,	height,	and	marks	on	an	exam
paper	(scale	0–100).	In	table	1,	the	“year”	attribute	is	an	example	of	an	interval-
scale	attribute,	and	the	“price”	attribute	is	an	example	of	a	ratio-scale	attribute.
Nominal	(also	known	as	categorical)	attributes	take	values	from	a	finite	set.

These	values	are	names	(hence	“nominal”)	for	categories,	classes,	or	states	of
things.	Examples	of	nominal	attributes	include	marital	status	(single,	married,
divorced)	and	beer	type	(ale,	pale	ale,	pils,	porter,	stout,	etc.).	A	binary	attribute
is	a	special	case	of	a	nominal	attribute	where	the	set	of	possible	values	is
restricted	to	just	two	values.	For	example,	we	might	have	the	binary	attribute
“spam,”	which	describes	whether	an	email	is	spam	(true)	or	not	spam	(false),	or
the	binary	attribute	“smoker,”	which	describes	whether	an	individual	is	a	smoker
(true)	or	not	(false).	Nominal	attributes	cannot	have	ordering	or	arithmetic
operations	applied	to	them.	Note	that	a	nominal	attribute	may	be	sorted
alphabetically,	but	alphabetizing	is	a	distinct	operation	from	ordering.	In	table	1,
“author”	and	“title”	are	examples	of	nominal	attributes.
Ordinal	attributes	are	similar	to	nominal	attributes,	with	the	difference	that	it	is

possible	to	apply	a	rank	order	over	the	categories	of	ordinal	attributes.	For
example,	an	attribute	describing	the	response	to	a	survey	question	might	take
values	from	the	domain	“strongly	dislike,	dislike,	neutral,	like,	and	strongly
like.”	There	is	a	natural	ordering	over	these	values	from	“strongly	dislike”	to
“strongly	like”	(or	vice	versa	depending	on	the	convention	being	used).
However,	an	important	feature	of	ordinal	data	is	that	there	is	no	notion	of	equal
distance	between	these	values.	For	example,	the	cognitive	distance	between
“dislike”	and	“neutral”	may	be	different	from	the	distance	between	“like”	and
“strongly	like.”	As	a	result,	it	is	not	appropriate	to	apply	arithmetic	operations
(such	as	averaging)	on	ordinal	attributes.	In	table	1,	the	“edition”	attribute	is	an
example	of	an	ordinal	attribute.	The	distinction	between	nominal	and	ordinal
data	is	not	always	clear-cut.	For	example,	consider	an	attribute	that	describes	the
weather	and	that	can	take	the	values	“sunny,”	“rainy,”	“overcast.”	One	person
might	view	this	attribute	as	being	nominal,	with	no	natural	order	over	the	values,



whereas	another	person	might	argue	that	the	attribute	is	ordinal,	with	“overcast”
being	treated	as	an	intermediate	value	between	“sunny”	and	“rainy”	(Hall,
Witten,	and	Frank	2011).
The	data	type	of	an	attribute	(numeric,	ordinal,	nominal)	affects	the	methods

we	can	use	to	analyze	and	understand	the	data,	including	both	the	basic	statistics
we	can	use	to	describe	the	distribution	of	values	that	an	attribute	takes	and	the
more	complex	algorithms	we	use	to	identify	the	patterns	of	relationships
between	attributes.	At	the	most	basic	level	of	analysis,	numeric	attributes	allow
arithmetic	operations,	and	the	typical	statistical	analysis	applied	to	numeric
attributes	is	to	measure	the	central	tendency	(using	the	mean	value	of	the
attribute)	and	the	dispersion	of	the	attributes	values	(using	the	variance	or
standard	deviation	statistics).	However,	it	does	not	make	sense	to	apply
arithmetic	operations	to	nominal	or	ordinal	attributes.	So	the	basic	analysis	of
these	types	of	attributes	involves	counting	the	number	of	times	each	of	the
values	occurs	in	the	data	set	or	calculating	the	proportion	of	occurrence	of	each
value	or	both.
Data	are	generated	through	a	process	of	abstraction,	so	any	data	are	the	result

of	human	decisions	and	choices.	For	every	abstraction,	somebody	(or	some	set
of	people)	will	have	made	choices	with	regard	to	what	to	abstract	from	and	what
categories	or	measurements	to	use	in	the	abstracted	representation.	The
implication	is	that	data	are	never	an	objective	description	of	the	world.	They	are
instead	always	partial	and	biased.	As	Alfred	Korzybski	has	observed,	“A	map	is
not	the	territory	it	represents,	but,	if	correct,	it	has	a	similar	structure	to	the
territory	which	accounts	for	its	usefulness”	(1996,	58).
In	other	words,	the	data	we	use	for	data	science	are	not	a	perfect	representation

of	the	real-world	entities	and	processes	we	are	trying	to	understand,	but	if	we	are
careful	in	how	we	design	and	gather	the	data	that	we	use,	then	the	results	of	our
analysis	will	provide	useful	insights	into	our	real-world	problems.	The
moneyball	story	given	in	chapter	1	is	a	great	example	of	how	the	determinant	of
success	in	many	data	science	projects	is	figuring	out	the	correct	abstractions
(attributes)	to	use	for	a	given	domain.	Recall	that	the	key	to	the	moneyball	story
was	that	the	Oakland	A’s	figured	out	that	a	player’s	on-base	percentage	and
slugging	percentage	are	better	attributes	to	use	to	predict	a	player’s	offensive
success	than	traditional	baseball	statistics	such	as	batting	average.	Using
different	attributes	to	describe	players	gave	the	Oakland	A’s	a	different	and	better
model	of	baseball	than	the	other	teams	had,	which	enabled	it	to	identify
undervalued	players	and	to	compete	with	larger	franchises	using	a	smaller
budget.
The	moneyball	story	illustrates	that	the	old	computer	science	adage	“garbage



in,	garbage	out”	is	true	for	data	science:	if	the	inputs	to	a	computational	process
are	incorrect,	then	the	outputs	from	the	process	will	be	incorrect.	Indeed,	two
characteristics	of	data	science	cannot	be	overemphasized:	(a)	for	data	science	to
be	successful,	we	need	to	pay	a	great	deal	of	attention	to	how	we	create	our	data
(in	terms	of	both	the	choices	we	make	in	designing	the	data	abstractions	and	the
quality	of	the	data	captured	by	our	abstraction	processes),	and	(b)	we	also	need
to	“sense	check”	the	results	of	a	data	science	process—that	is,	we	need	to
understand	that	just	because	the	computer	identifies	a	pattern	in	the	data	this
doesn’t	mean	that	it	is	identifying	a	real	insight	in	the	processes	we	are	trying	to
analyze;	the	pattern	may	simply	be	based	on	the	biases	in	our	data	design	and
capture.

Perspectives	on	Data

Other	than	type	of	data	(numeric,	nominal,	and	ordinal),	a	number	of	other
useful	distinctions	can	be	made	regarding	data.	One	such	distinction	is	between
structured	and	unstructured	data.	Structured	data	are	data	that	can	be	stored	in	a
table,	and	every	instance	in	the	table	has	the	same	structure	(i.e.,	set	of
attributes).	As	an	example,	consider	the	demographic	data	for	a	population,
where	each	row	in	the	table	describes	one	person	and	consists	of	the	same	set	of
demographic	attributes	(name,	age,	date	of	birth,	address,	gender,	education
level,	job	status,	etc.).	Structured	data	can	be	easily	stored,	organized,	searched,
reordered,	and	merged	with	other	structured	data.	It	is	relatively	easy	to	apply
data	science	to	structured	data	because,	by	definition,	it	is	already	in	a	format
that	is	suitable	for	integration	into	an	analytics	record.	Unstructured	data	are
data	where	each	instance	in	the	data	set	may	have	its	own	internal	structure,	and
this	structure	is	not	necessarily	the	same	in	every	instance.	For	example,	imagine
a	data	set	of	webpages,	with	each	webpage	having	a	structure	but	this	structure
differing	from	one	webpage	to	another.	Unstructured	data	are	much	more
common	than	structured	data.	For	example,	collections	of	human	text	(emails,
tweets,	text	messages,	posts,	novels,	etc.)	can	be	considered	unstructured	data,	as
can	collections	of	sound,	image,	music,	video,	and	multimedia	files.	The
variation	in	the	structure	between	the	different	elements	means	that	it	is	difficult
to	analyze	unstructured	data	in	its	raw	form.	We	can	often	extract	structured	data
from	unstructured	data	using	techniques	from	artificial	intelligence	(such	as
natural-language	processing	and	ML),	digital	signal	processing,	and	computer
vision.	However,	implementing	and	testing	these	data-transformation	processes



is	expensive	and	time-consuming	and	can	add	significant	financial	overhead	and
time	delays	to	a	data	science	project.
Sometimes	attributes	are	raw	abstractions	from	an	event	or	object—for

example,	a	person’s	height,	the	number	of	words	in	an	email,	the	temperature	in
a	room,	the	time	or	location	of	an	event.	But	data	can	also	be	derived	from	other
pieces	of	data.	Consider	the	average	salary	in	a	company	or	the	variance	in	the
temperature	of	a	room	across	a	period	of	time.	In	both	of	these	examples,	the
resulting	data	are	derived	from	an	original	set	of	data	by	applying	a	function	to
the	original	raw	data	(individual	salaries	or	temperature	readings).	It	is
frequently	the	case	that	the	real	value	of	a	data	science	project	is	the
identification	of	one	or	more	important	derived	attributes	that	provide	insight
into	a	problem.	Imagine	we	are	trying	to	get	a	better	understanding	of	obesity
within	a	population,	and	we	are	trying	to	understand	the	attributes	of	an
individual	that	identify	him	as	being	obese.	We	would	begin	by	examining	the
raw	attributes	of	individuals,	such	as	their	height	and	weight,	but	after	studying
the	problem	for	some	time	we	might	end	up	designing	a	more	informative
derived	attribute	such	as	the	Body	Mass	Index	(BMI).	BMI	is	the	ratio	of	a
person’s	mass	and	height.	Recognizing	that	the	interaction	between	the	raw
attributes	“mass”	and	“height”	provides	more	information	about	obesity	then
either	of	these	two	attributes	can	when	examined	independently	will	help	us	to
identify	people	in	the	population	who	are	at	risk	of	obesity.	Obviously,	BMI	is	a
simple	example	that	we	use	here	to	illustrate	the	importance	of	derived
attributes.	But	consider	situations	where	the	insight	into	the	problem	is	given
through	multiple	derived	attributes,	where	each	attribute	involves	two	(or
potentially	more)	additional	attributes.	It	is	in	contexts	where	multiple	attributes
interact	together	that	data	science	provides	us	with	real	benefits	because	the
algorithms	we	use	can,	in	some	cases,	learn	the	derived	attributes	from	the	raw
data.
There	are	generally	two	terms	for	gathered	raw	data:	captured	data	and

exhaust	data	(Kitchin	2014a).	Captured	data	are	collected	through	a	direct
measurement	or	observation	that	is	designed	to	gather	the	data.	For	example,	the
primary	purpose	of	surveys	and	experiments	is	to	gather	specific	data	on	a
particular	topic	of	interest.	By	contrast,	exhaust	data	are	a	by-product	of	a
process	whose	primary	purpose	is	something	other	than	data	capture.	For
example,	the	primary	purpose	of	many	social	media	technologies	is	to	enable
users	to	connect	with	other	people.	However,	for	every	image	shared,	blog
posted,	tweet	retweeted,	or	post	liked,	a	range	of	exhaust	data	is	generated:	who
shared,	who	viewed,	what	device	was	used,	what	time	of	day,	which	device	was
used,	how	many	people	viewed/liked/retweeted,	and	so	on.	Similarly,	the



primary	purpose	of	the	Amazon	website	is	to	enable	users	to	make	purchases
from	the	site.	However,	each	purchase	generates	volumes	of	exhaust	data:	what
items	the	user	put	into	her	basket,	how	long	she	stayed	on	the	site,	what	other
items	she	viewed,	and	so	on.
One	of	the	most	common	types	of	exhaust	data	is	metadata—that	is,	data	that

describe	other	data.	When	Edward	Snowden	released	documents	about	the	US
National	Security	Agency’s	surveillance	program	PRISM,	he	revealed	that	the
agency	was	collecting	a	large	amount	of	metadata	about	people’s	phone	calls.
This	meant	that	the	agency	was	not	actually	recording	the	content	of	peoples
phone	calls	(it	was	not	doing	wiretapping)	but	rather	collecting	the	data	about
the	calls,	such	as	when	the	call	was	made,	who	the	recipient	was,	how	long	the
call	lasted,	and	so	on	(Pomerantz	2015).	This	type	of	data	gathering	may	not
appear	ominous,	but	the	MetaPhone	study	carried	out	at	Stanford	highlighted	the
types	of	sensitive	insights	that	phone-call	metadata	can	reveal	about	an
individual	(Mayer	and	Mutchler	2014).	The	fact	that	many	organizations	have
very	specific	purposes	makes	it	relatively	easy	to	infer	sensitive	information
about	a	person	based	on	his	phone	calls	to	these	organizations.	For	example,
some	of	the	people	in	the	MetaPhone	study	made	calls	to	Alcoholics
Anonymous,	divorce	lawyers,	and	medical	clinics	specializing	in	sexually
transmitted	diseases.	Patterns	in	calls	can	also	be	revealing.	The	pattern	analysis
from	the	study	showed	how	patterns	of	calls	reveal	potentially	very	sensitive
information:

Participant	A	communicated	with	multiple	local	neurology	groups,	a
specialty	pharmacy,	a	rare	condition	management	service,	and	a	hotline	for
a	pharmaceutical	used	solely	to	treat	relapsing	multiple	sclerosis.	…	In	a
span	of	three	weeks,	Participant	D	contacted	a	home	improvement	store,
locksmiths,	a	hydroponics	dealer,	and	a	head	shop.	(Mayer	and	Mutchler
2014)
Data	science	has	traditionally	focused	on	captured	data.	However,	as	the

MetaPhone	study	shows,	exhaust	data	can	be	used	to	reveal	hidden	insight	into
situations.	In	recent	years,	exhaust	data	have	become	more	and	more	useful,
particularly	in	the	realm	of	customer	engagement,	where	the	linking	of	different
exhaust	data	sets	has	the	potential	to	provide	a	business	with	a	richer	profile	of
individual	customers,	thereby	enabling	the	business	to	target	its	services	and
marketing	to	certain	customers.	In	fact,	one	of	the	factors	driving	the	growth	in
data	science	in	business	today	is	the	recognition	of	the	value	of	exhaust	data	and
the	potential	that	data	science	has	to	unlock	this	value	for	businesses.



Data	Accumulates,	Wisdom	Doesn’t!

The	goal	of	data	science	is	to	use	data	to	get	insight	and	understanding.	The
Bible	urges	us	to	attain	understanding	by	seeking	wisdom:	“wisdom	is	the
principal	thing,	therefore	get	wisdom	and	with	all	thy	getting	get	understanding”
(Proverbs	4:7	[King	James]).	This	advice	is	reasonable,	but	it	does	beg	the
question	of	how	one	should	go	about	seeking	wisdom.	The	following	lines	from
T.	S.	Eliot’s	poem	“Choruses	from	The	Rock”	describes	a	hierarchy	of	wisdom,
knowledge,	and	information:

Where	is	the	wisdom	we	have	lost	in	knowledge?
Where	is	the	knowledge	we	have	lost	in	information?	(Eliot	1934,	96)

Eliot’s	hierarchy	mirrors	the	standard	model	of	the	structural	relationships
between	wisdom,	knowledge,	information,	and	data	known	as	the	DIKW
pyramid	(see	figure	2).	In	the	DIKW	pyramid,	data	precedes	information,	which
precedes	knowledge,	which	precedes	wisdom.	Although	the	order	of	the	layers
in	the	hierarchy	are	generally	agreed	upon,	the	distinctions	between	the	layers
and	the	processes	required	to	move	from	one	layer	to	the	next	are	often
contested.	Broadly	speaking,	however,

Figure	2	The	DIKW	pyramid	(adapted	from	Kitchin	2014a).

Data	are	created	through	abstractions	or	measurements	taken	from	the	world.

Information	is	data	that	have	been	processed,	structured,	or	contextualized	so



that	it	is	meaningful	to	humans.

Knowledge	is	information	that	has	been	interpreted	and	understood	by	a
human	so	that	she	can	act	on	it	if	required.

Wisdom	is	acting	on	knowledge	in	an	appropriate	way.

The	activities	in	the	data	science	process	can	also	be	represented	using	a
similar	pyramid	hierarchy	where	the	width	of	the	pyramid	represents	the	amount
of	data	being	processed	at	each	level	and	where	the	higher	the	layer	in	the
pyramid,	the	more	informative	the	results	of	the	activities	are	for	decision
making.	Figure	3	illustrates	the	hierarchy	of	data	science	activities	from	data
capture	and	generation	through	data	preprocessing	and	aggregation,	data
understanding	and	exploration,	pattern	discovery	and	model	creation	using	ML,
and	decision	support	using	data-driven	models	deployed	in	the	business	context.

Figure	3	Data	science	pyramid	(adapted	from	Han,	Kamber,	and	Pei	2011).

The	CRISP-DM	Process

Many	people	and	companies	regularly	put	forward	suggestions	on	the	best
process	to	follow	to	climb	the	data	science	pyramid.	The	most	commonly	used
process	is	the	Cross	Industry	Standard	Process	for	Data	Mining	(CRISP-DM).	In
fact,	the	CRISP-DM	has	regularly	been	in	the	number-one	spot	in	various
industry	surveys	for	a	number	of	years.	The	primary	advantage	of	CRISP-DM,



the	main	reason	why	it	is	so	widely	used,	is	that	it	is	designed	to	be	independent
of	any	software,	vendor,	or	data-analysis	technique.
CRISP-DM	was	originally	developed	by	a	consortium	of	organizations

consisting	of	leading	data	science	vendors,	end	users,	consultancy	companies,
and	researchers.	The	original	CRISP-DM	project	was	sponsored	in	part	by	the
European	Commission	under	the	ESPRIT	Program,	and	the	process	was	first
presented	at	a	workshop	in	1999.	Since	then,	a	number	of	attempts	have	been
made	to	update	the	process,	but	the	original	version	is	still	predominantly	in	use.
For	many	years,	there	was	a	dedicated	website	for	CRISP-DM,	but	in	recent
years	this	website	is	no	longer	available,	and	on	occasion	you	might	get
redirected	to	the	SPSS	website	by	IBM,	which	was	one	of	the	original
contributors	to	the	project.	The	original	consortium	published	a	detailed	(76-
page)	but	readable	step-by-step	guide	to	the	process	that	is	freely	available
online	(see	Chapman	et	al.	1999),	but	the	structure	and	major	tasks	of	the
process	can	be	summarized	in	a	few	pages.
The	CRISP-DM	life	cycle	consists	of	six	stages:	business	understanding,	data

understanding,	data	preparation,	modeling,	evaluation,	and	deployment,	as
shown	in	figure	4.	Data	are	at	the	center	of	all	data	science	activities,	and	that	is
why	the	CRISP-DM	diagram	has	data	at	its	center.	The	arrows	between	the
stages	indicate	the	typical	direction	of	the	process.	The	process	is
semistructured,	which	means	that	a	data	scientist	doesn’t	always	move	through
these	six	stages	in	a	linear	fashion.	Depending	on	the	outcome	of	a	particular
stage,	a	data	scientist	may	go	back	to	one	of	the	previous	stages,	redo	the	current
stage,	or	move	on	to	the	next	stage.



Figure	4	The	CRISP-DM	life	cycle	(based	on	figure	2	in	Chapman,	Clinton,
Kerber,	et	al.	1999).

In	the	first	two	stages,	business	understanding	and	data	understanding,	the	data
scientist	is	trying	to	define	the	goals	of	the	project	by	understanding	the	business
needs	and	the	data	that	the	business	has	available	to	it.	In	the	early	stages	of	a
project,	a	data	scientist	will	often	iterate	between	focusing	on	the	business	and
exploring	what	data	are	available.	This	iteration	typically	involves	identifying	a
business	problem	and	then	exploring	if	the	appropriate	data	are	available	to
develop	a	data-driven	solution	to	the	problem.	If	the	data	are	available,	the
project	can	proceed;	if	not,	the	data	scientist	will	have	to	identify	an	alternative
problem	to	tackle.	During	this	stage	of	a	project,	a	data	scientist	will	spend	a
great	deal	of	time	in	meetings	with	colleagues	in	the	business-focused
departments	(e.g.,	sales,	marketing,	operations)	to	understand	their	problems	and
with	the	database	administrators	to	get	an	understanding	of	what	data	are
available.
Once	the	data	scientist	has	clearly	defined	a	business	problem	and	is	happy

that	the	appropriate	data	are	available,	she	moves	on	to	the	next	phase	of	the
CRISP-DM:	data	preparation.	The	focus	of	the	data-preparation	stage	is	the
creation	of	a	data	set	that	can	be	used	for	the	data	analysis.	In	general,	creating



this	data	set	involves	integrating	data	sources	from	a	number	of	databases.	When
an	organization	has	a	data	warehouse,	this	data	integration	can	be	relatively
straightforward.	Once	a	data	set	has	been	created,	the	quality	of	the	data	needs	to
be	checked	and	fixed.	Typical	data-quality	problems	include	outliers	and	missing
values.	Checking	the	quality	of	the	data	is	very	important	because	errors	in	the
data	can	have	a	serious	effect	on	the	performance	of	the	data-analysis
algorithms.
The	next	stage	of	CRISP-DM	is	the	modeling	stage.	This	is	the	stage	where

automatic	algorithms	are	used	to	extract	useful	patterns	from	the	data	and	to
create	models	that	encode	these	patterns.	Machine	learning	is	the	field	of
computer	science	that	focuses	on	the	design	of	these	algorithms.	In	the	modeling
stage,	a	data	scientist	will	normally	use	a	number	of	different	ML	algorithms	to
train	a	number	of	different	models	on	the	data	set.	A	model	is	trained	on	a	data
set	by	running	an	ML	algorithm	on	the	data	set	so	as	to	identify	useful	patterns
in	the	data	and	to	return	a	model	that	encodes	these	patterns.	In	some	cases	an
ML	algorithm	works	by	fitting	a	template	model	structure	to	a	data	set	by	setting
the	parameters	of	the	template	to	good	values	for	that	data	set	(e.g.,	fitting	a
linear	regression	or	neural	network	model	to	a	data	set).	In	other	cases	an	ML
algorithm	builds	a	model	in	a	piecewise	fashion	(e.g.	growing	a	decision	tree	one
node	at	a	time	beginning	at	the	root	node	of	the	tree).	In	most	data	science
projects	it	is	a	model	generated	by	an	ML	algorithm	that	is	ultimately	the
software	that	is	deployed	by	an	organization	to	help	it	solve	the	problem	the	data
science	project	is	addressing.	Each	model	is	trained	by	a	different	type	of	ML
algorithm,	and	each	algorithm	looks	for	different	types	of	patterns	in	the	data.	At
this	stage	in	the	project,	the	data	scientist	typically	doesn’t	know	which	patterns
are	the	best	ones	to	look	for	in	the	data,	so	in	this	context	it	makes	sense	to
experiment	with	a	number	of	different	algorithms	and	see	which	algorithm
returns	the	most	accurate	models	when	run	on	the	data	set.	In	chapter	4	we	will
introduce	ML	algorithms	and	models	in	much	more	detail	and	explain	how	to
create	a	test	plan	to	evaluate	model	accuracy.
In	the	majority	of	data	science	projects,	the	initial	model	test	results	will

uncover	problems	in	the	data.	These	data	errors	sometimes	come	to	light	when
the	data	scientist	investigates	why	the	performance	of	a	model	is	lower	than
expected	or	notices	that	maybe	the	model’s	performance	is	suspiciously	good.	Or
by	examining	the	structure	of	the	models,	the	data	scientist	may	find	that	the
model	is	reliant	on	attributes	that	she	would	not	expect,	and	as	a	result	she
revisits	the	data	to	check	that	these	attributes	are	correctly	encoded.	It	is	thus	not
uncommon	for	a	project	to	go	through	several	rounds	of	these	two	stages	of	the
process:	modeling,	data	preparation;	modeling,	data	preparation;	and	so	on.	For



example,	Dan	Steinberg	and	his	team	reported	that	during	one	data	science
project,	they	rebuilt	their	data	set	10	times	over	a	six-week	period,	and	in	week
five,	having	gone	through	a	number	of	iterations	of	data	cleaning	and
preparation,	they	uncovered	a	major	error	in	the	data	(Steinberg	2013).	If	this
error	had	not	been	identified	and	fixed,	the	project	would	not	have	succeeded.
The	last	two	stages	of	the	CRISP-DM	process,	evaluation	and	deployment,	are

focused	on	how	the	models	fit	the	business	and	its	processes.	The	tests	run
during	the	modeling	stage	are	focused	purely	on	the	accuracy	of	the	models	for
the	data	set.	The	evaluation	phase	involves	assessing	the	models	in	the	broader
context	defined	by	the	business	needs.	Does	a	model	meet	the	business
objectives	of	the	process?	Is	there	any	business	reason	why	a	model	is
inadequate?	At	this	point	in	the	process,	it	is	also	useful	for	the	data	scientist	to
do	a	general	quality-assurance	review	on	the	project	activities:	Was	anything
missed?	Could	anything	have	been	done	better?	Based	on	the	general	assessment
of	the	models,	the	main	decision	made	during	the	evaluation	phase	is	whether
any	of	the	models	should	be	deployed	in	the	business	or	another	iteration	of	the
CRISP-DM	process	is	required	to	create	adequate	models.	Assuming	the
evaluation	process	approves	a	model	or	models,	the	project	moves	into	the	final
stage	of	the	process:	deployment.	The	deployment	phase	involves	examining
how	to	deploy	the	selected	models	into	the	business	environment.	This	involves
planning	how	to	integrate	the	models	into	the	organization’s	technical
infrastructure	and	business	processes.	The	best	models	are	the	ones	that	fit
smoothly	into	current	practices.	Models	that	fit	current	practices	have	a	natural
set	of	users	who	have	a	clearly	defined	problem	that	the	model	helps	them	to
solve.	Another	aspect	of	deployment	is	putting	a	plan	in	place	to	periodically
review	the	performance	of	the	model.
The	outer	circle	of	the	CRISP-DM	diagram	(figure	4)	highlights	how	the

whole	process	is	iterative.	The	iterative	nature	of	data	science	projects	is	perhaps
the	aspect	of	these	projects	that	is	most	often	overlooked	in	discussions	of	data
science.	After	a	project	has	developed	and	deployed	a	model,	the	model	should
be	regularly	reviewed	to	check	that	it	still	fits	the	business’s	needs	and	that	it
hasn’t	become	obsolete.	There	are	many	reasons	why	a	data-driven	model	can
become	obsolete:	the	business’s	needs	might	have	changed;	the	process	the
model	emulates	and	provides	insight	into	might	have	changed	(for	example,
customer	behavior	changes,	spam	email	changes,	etc.);	or	the	data	streams	the
model	uses	might	have	changed	(for	example,	a	sensor	that	feeds	information
into	a	model	may	have	been	updated,	and	the	new	version	of	the	sensor	provides
slightly	different	readings,	causing	the	model	to	be	less	accurate).	The	frequency
of	this	review	is	dependent	on	how	quickly	the	business	ecosystem	and	the	data



that	the	model	uses	evolve.	Constant	monitoring	is	needed	to	determine	the	best
time	to	go	through	the	process	again.	This	is	what	the	outer	circle	of	the	CRISP-
DM	process	shown	in	figure	4	represents.	For	example,	depending	on	the	data,
the	business	question,	and	the	domain,	you	may	have	go	through	this	iterative
process	on	a	yearly,	quarterly,	monthly,	weekly,	or	even	daily	basis.	Figure	5
gives	a	summary	of	the	different	stages	of	the	data	science	project	process	and
the	major	tasks	involved	in	each	phase.

Figure	5	The	CRISP-DM	stages	and	tasks	(based	on	figure	3	in	Chapman,
Clinton,	Kerber,	et	al.	1999).

A	frequent	mistake	that	many	inexperienced	data	scientists	make	is	to	focus
their	efforts	on	the	modeling	stage	of	the	CRISP-DM	and	to	rush	through	the
other	stages.	They	may	think	that	the	really	important	deliverable	from	a	project
is	the	model,	so	the	data	scientist	should	devote	most	of	his	time	to	building	and
finessing	the	model.	However,	data	science	veterans	will	spend	more	time	on
ensuring	that	the	project	has	a	clearly	defined	focus	and	that	it	has	the	right	data.
For	a	data	science	project	to	succeed,	a	data	scientist	needs	to	have	a	clear
understanding	of	the	business	need	that	the	project	is	trying	to	solve.	So	the
business	understanding	stage	of	the	process	is	really	important.	With	regard	to
getting	the	right	data	for	a	project,	a	survey	of	data	scientists	in	2016	found	that
79	percent	of	their	time	is	spent	on	data	preparation.	The	time	spent	across	the
major	tasks	in	the	project	was	distributed	as	follows:	collecting	data	sets,	19



percent;	cleaning	and	organizing	data,	60	percent;	building	training	sets,	3
percent;	mining	data	for	patterns,	9	percent;	refining	algorithms,	4	percent;	and
performing	other	tasks,	5	percent	(CrowdFlower	2016).	The	79	percent	figure
for	preparation	comes	from	summing	the	time	spent	on	collecting,	cleaning,	and
organizing	the	data.	That	around	80	percent	of	project	time	is	spent	on	gathering
and	preparing	data	has	been	a	consistent	finding	in	industry	surveys	for	a
number	of	years.	Sometimes	this	finding	surprises	people	because	they	imagine
data	scientists	spend	their	time	building	complex	models	to	extract	insight	from
the	data.	But	the	simple	truth	is	that	no	matter	how	good	your	data	analysis	is,	it
won’t	identify	useful	patterns	unless	it	is	applied	to	the	right	data.

Notes

1. Although	many	data	sets	can	be	described	as	a	flat	n	*	m	matrix,	in	some
scenarios	the	data	set	is	more	complex:	for	example,	if	a	data	set	describes	the
evolution	of	multiple	attributes	through	time,	then	each	time	point	in	the	data
set	will	be	represented	by	a	two-dimensional	flat	n	*	m	matrix,	listing	the
state	of	the	attributes	at	that	point	in	time,	but	the	overall	data	set	will	be	three
dimensional,	where	time	is	used	to	link	the	two-dimensional	snapshots.	In
these	contexts,	the	term	tensor	is	sometimes	used	to	generalize	the	matrix
concept	to	higher	dimensions.

2. This	example	is	inspired	by	an	example	in	Han,	Kamber,	and	Pei	2011.



3 A	Data	Science	Ecosystem

The	set	of	technologies	used	to	do	data	science	varies	across	organizations.	The
larger	the	organization	or	the	greater	the	amount	of	data	being	processed	or	both,
the	greater	the	complexity	of	the	technology	ecosystem	supporting	the	data
science	activities.	In	most	cases,	this	ecosystem	contains	tools	and	components
from	a	number	of	different	software	suppliers,	processing	data	in	many	different
formats.	There	is	a	spectrum	of	approaches	from	which	an	organization	can
select	when	developing	its	own	data	science	ecosystem.	At	one	end	of	the
spectrum,	the	organization	may	decide	to	invest	in	a	commercial	integrated	tool
set.	At	the	other	end,	it	might	build	up	a	bespoke	ecosystem	by	integrating	a	set
of	open-source	tools	and	languages.	In	between	these	two	extremes,	some
software	suppliers	provide	solutions	that	consist	of	a	mixture	of	commercial
products	and	open-source	products.	However,	although	the	particular	mix	of
tools	will	vary	from	one	organization	to	the	next,	there	is	a	commonality	in	terms
of	the	components	that	are	present	in	most	data	science	architectures.
Figure	6	gives	a	high-level	overview	of	a	typical	data	architecture.	This

architecture	is	not	just	for	big-data	environments,	but	for	data	environments	of
all	sizes.	In	this	diagram,	the	three	main	areas	consist	of	data	sources,	where	all
the	data	in	an	organization	are	generated;	data	storage,	where	the	data	are	stored
and	processed;	and	applications,	where	the	data	are	shared	with	consumers	of
these	data.



Figure	6	A	typical	small-data	and	big-data	architecture	for	data	science
(inspired	by	a	figure	from	the	Hortonworks	newsletter,	April	23,	2013,
https://hortonworks.com/blog/hadoop-and-the-data-warehouse-when-to-use-
which).

All	organizations	have	applications	that	generate	and	capture	data	about
customers,	transactions,	and	operational	data	on	everything	to	do	with	how	the
organization	operates.	Such	data	sources	and	applications	include	customer
management,	orders,	manufacturing,	delivery,	invoicing,	banking,	finance,
customer-relationship	management	(CRM),	call	center,	enterprise	resource
planning	(ERP)	applications,	and	so	on.	These	types	of	applications	are
commonly	referred	to	as	online	transaction	processing	(OLTP)	systems.	For
many	data	science	projects,	the	data	from	these	applications	will	be	used	to	form
the	initial	input	data	set	for	the	ML	algorithms.	Over	time,	the	volume	of	data
captured	by	the	various	applications	in	the	organization	grows	ever	larger	and
the	organization	will	start	to	branch	out	to	capture	data	that	was	ignored,	wasn’t
captured	previously,	or	wasn’t	available	previously.	These	newer	data	are
commonly	referred	to	as	“big-data	sources”	because	the	volume	of	data	that	is
captured	is	significantly	higher	than	the	organization’s	main	operational
applications.	Some	of	the	common	big-data	sources	include	network	traffic,
logging	data	from	various	applications,	sensor	data,	weblog	data,	social	media
data,	website	data,	and	so	on.	In	traditional	data	sources,	the	data	are	typically

https://hortonworks.com/blog/hadoop-and-the-data-warehouse-when-to-use-which


stored	in	a	database.	However,	because	the	applications	associated	with	many	of
the	newer	big-data	sources	are	not	primarily	designed	to	store	data	long	term—
for	example,	with	streaming	data—the	storage	formats	and	structures	for	this
type	of	data	vary	from	application	to	application.
As	the	number	of	data	sources	increases,	so	does	the	challenge	of	being	able	to

use	these	data	for	analytics	and	for	sharing	them	across	the	wider	organization.
The	data-storage	layer,	shown	in	figure	6,	is	typically	used	to	address	the	data
sharing	and	data	analytics	across	an	organization.	This	layer	is	divided	into	two
parts.	The	first	part	covers	the	typical	data-sharing	software	used	by	most
organizations.	The	most	popular	form	of	traditional	data-integration	and	storage
software	is	a	relational	database	management	system	(RDBMS).	These
traditional	systems	are	often	the	backbone	of	the	business	intelligence	(BI)
solutions	within	an	organization.	A	BI	solution	is	a	user-friendly	decision-
support	system	that	provides	data	aggregating,	integration,	and	reporting	as	well
as	analysis	functionality.	Depending	on	the	maturity	level	of	a	BI	architecture,	it
can	consist	of	anything	from	a	basic	copy	of	an	operational	application	to	an
operational	data	store	(ODS)	to	massively	parallel	processing	(MPP)	BI
database	solutions	and	data	warehouses.
Data	warehousing	is	best	understood	as	a	process	of	data	aggregation	and

analysis	with	the	goal	of	supporting	decision	making.	However,	the	focus	of	this
process	is	the	creation	of	a	well-designed	and	centralized	data	repository,	and	the
term	data	warehouse	is	sometimes	used	to	denote	this	type	of	data	repository.	In
this	sense,	a	data	warehouse	is	a	powerful	resource	for	data	science.	From	a	data
science	perspective,	one	of	the	major	advantages	of	having	a	data	warehouse	in
place	is	a	much	shorter	project	time.	The	key	ingredient	in	any	data	science
process	is	data,	so	it	is	not	surprising	that	in	many	data	science	projects	the
majority	of	time	and	effort	goes	into	finding,	aggregating,	and	cleaning	the	data
prior	to	their	analysis.	If	a	data	warehouse	is	available	in	a	company,	then	the
effort	and	time	that	go	into	data	preparation	on	individual	data	science	projects	is
often	significantly	reduced.	However,	it	is	possible	to	do	data	science	without	a
centralized	data	repository.	Constructing	a	centralized	repository	of	data	involves
more	than	simply	dumping	the	data	from	multiple	operational	databases	into	a
single	database.
Merging	data	from	multiple	databases	often	requires	much	complex	manual

work	to	resolve	inconsistencies	between	the	source	databases.	Extraction,
transformation,	and	load	(ETL)	is	the	term	used	to	describe	the	typical	processes
and	tools	used	to	support	the	mapping,	merging,	and	movement	of	data	between
databases.	The	typical	operations	carried	out	in	a	data	warehouse	are	different
from	the	simple	operations	normally	applied	to	a	standard	relational	data	model



database.	The	term	online	analytical	processing	(OLAP)	is	used	to	describe
these	operations.	OLAP	operations	are	generally	focused	on	generating
summaries	of	historic	data	and	involve	aggregating	data	from	multiple	sources.
For	example,	we	might	pose	the	following	OLAP	request	(expressed	here	in
English	for	readability):	“Report	the	sales	of	all	stores	by	region	and	by	quarter
and	compare	these	figures	to	last	year’s	figures.”	What	this	example	illustrates	is
that	the	result	of	an	OLAP	request	often	resembles	what	you	would	expect	to	see
as	a	standard	business	report.	OLAP	operations	essentially	enable	users	to	slice,
dice,	and	pivot	the	data	in	the	warehouse	and	get	different	views	of	these	data.
They	work	on	a	data	representation	called	a	data	cube	that	is	built	on	top	of	the
data	warehouse.	A	data	cube	has	a	fixed,	predefined	set	of	dimensions	in	which
each	dimension	represents	a	particular	characteristic	of	the	data.	The	required
data-cube	dimensions	for	the	example	OLAP	request	given	earlier	would	be
sales	by	stores,	sales	by	region,	and	sales	by	quarter.	The	primary	advantage	of
using	a	data	cube	with	a	fixed	set	of	dimensions	is	that	it	speeds	up	the	response
time	of	OLAP	operations.	Also,	because	the	set	of	data-cube	dimensions	is
preprogrammed	into	the	OLAP	system,	the	system	can	provide	user-friendly
graphical	user	interfaces	for	defining	OLAP	requests.	However,	the	data-cube
representation	also	restricts	the	types	of	analysis	that	can	be	done	using	OLAP	to
the	set	of	queries	that	can	be	generated	using	the	predefined	dimensions.	By
comparison,	SQL	provides	a	more	flexible	query	interface.	Also,	although	OLAP
systems	are	useful	for	data	exploration	and	reporting,	they	don’t	enable	data
modeling	or	the	automatic	extraction	of	patterns	from	the	data.	Once	the	data
from	across	an	organization	has	been	aggregated	and	analyzed	within	the	BI
system,	this	analysis	can	then	be	used	as	input	to	a	range	of	consumers	in	the
applications	layer	of	figure	6.
The	second	part	of	the	data-storage	layer	deals	with	managing	the	data

produced	by	an	organization’s	big-data	sources.	In	this	architecture,	the	Hadoop
platform	is	used	for	the	storage	and	analytics	of	these	big	data.	Hadoop	is	an
open-source	framework	developed	by	the	Apache	Software	Foundation	that	is
designed	for	the	processing	of	big	data.	It	uses	distributed	storage	and	processing
across	clusters	of	commodity	servers.	Applying	the	MapReduce	programming
model,	it	speeds	up	the	processing	of	queries	on	large	data	sets.	MapReduce
implements	the	split-apply-combine	strategy:	(a)	a	large	data	set	is	split	up	into
separate	chunks,	and	each	chunk	is	stored	on	a	different	node	in	the	cluster;	(b)	a
query	is	then	applied	to	all	the	chunks	in	parallel;	and	(c)	the	result	of	the	query
is	then	calculated	by	combining	the	results	generated	on	the	different	chunks.
Over	the	past	couple	of	years,	however,	the	Hadoop	platform	is	also	being	used
as	an	extension	of	an	enterprise’s	data	warehouse.	Data	warehouses	originally



would	store	three	years	of	data,	but	now	data	warehouses	can	store	more	than	10
years	of	data,	and	this	number	keeps	increasing.	As	the	amount	of	data	in	a	data
warehouse	increases,	however,	the	storage	and	processing	requirements	of	the
database	and	server	also	have	to	increase.	This	requirement	can	have	a
significant	cost	implication.	An	alternative	is	to	move	some	of	the	older	data	in	a
data	warehouse	for	storage	into	a	Hadoop	cluster.	For	example,	the	data
warehouse	would	store	the	most	recent	data,	say	three	years’	worth	of	data,
which	frequently	need	to	be	available	for	quick	analysis	and	presentation,	while
the	older	data	and	the	less	frequently	used	data	are	stored	on	Hadoop.	Most	of
the	enterprise-level	databases	have	features	that	connect	the	data	warehouse	with
Hadoop,	allowing	a	data	scientist,	using	SQL,	to	query	the	data	in	both	places	as
if	they	all	are	located	in	one	environment.	Her	query	could	involve	accessing
some	data	in	the	data-warehouse	database	and	some	of	the	data	in	Hadoop.	The
query	processing	will	be	automatically	divided	into	two	distinct	parts,	each
running	independently,	and	the	results	will	be	automatically	combined	and
integrated	before	being	presented	back	to	the	data	scientist.
Data	analysis	is	associated	with	both	sections	of	the	data-storage	layer	in

figure	6.	Data	analysis	can	occur	on	the	data	in	each	section	of	the	data	layer,
and	the	results	from	data	analysis	can	be	shared	between	each	section	while
additional	data	analysis	is	being	performed.	The	data	from	traditional	sources
frequently	are	relatively	clean	and	information	dense	compared	to	the	data
captured	from	big-data	sources.	However,	the	volume	and	real-time	nature	of
many	big-data	sources	means	that	the	effort	involved	in	preparing	and	analyzing
these	big-data	sources	can	be	repaid	in	terms	of	additional	insights	not	available
through	the	data	coming	from	traditional	sources.	A	variety	of	data-analysis
techniques	developed	across	a	number	of	different	fields	of	research	(including
natural-language	processing,	computer	vision,	and	ML)	can	be	used	to	transform
unstructured,	low-density,	low-value	big	data	into	high-density	and	high-value
data.	These	high-value	data	can	then	be	integrated	with	the	other	high-value	data
from	traditional	sources	for	further	data	analysis.	The	description	given	in	this
chapter	and	illustrated	in	figure	6	is	the	typical	architecture	of	the	data	science
ecosystem.	It	is	suitable	for	most	organizations,	both	small	and	large.	However,
as	an	organization	scales	in	size,	so	too	will	the	complexity	of	its	data	science
ecosystem.	For	example,	smaller-scale	organizations	may	not	require	the
Hadoop	component,	but	for	very	large	organizations	the	Hadoop	component	will
become	very	important.



Moving	the	Algorithms	to	the	Data

The	traditional	approach	to	data	analysis	involves	the	extraction	of	data	from
various	databases,	integrating	the	data,	cleaning	the	data,	subsetting	the	data,	and
building	predictive	models.	Once	the	prediction	models	have	been	created	they
can	be	applied	to	the	new	data.	Recall	from	chapter	1	that	a	prediction	model
predicts	the	missing	value	of	an	attribute:	a	spam	filter	is	a	prediction	model	that
predicts	whether	the	classification	attribute	of	an	email	should	have	the	value	of
“spam”	or	not.	Applying	the	predictive	models	to	the	instances	in	new	data	to
generate	the	missing	values	is	known	as	“scoring	the	data.”	Then	the	final
results,	after	scoring	new	data,	may	be	loaded	back	into	a	database	so	that	these
new	data	can	be	used	as	part	of	some	workflow,	reporting	dashboard,	or	some
other	company	assessment	practice.	Figure	7	illustrates	that	much	of	the	data
processing	involved	in	data	preparation	and	analysis	is	located	on	a	server	that	is
separate	from	the	databases	and	the	data	warehouse.	Therefore,	a	significant
amount	of	time	can	be	spent	just	moving	the	data	out	of	the	database	and	moving
the	results	back	into	the	database.

Figure	7	The	traditional	process	for	building	predictive	models	and	scoring
data.

An	experiment	run	at	the	Dublin	Institute	of	Technology	on	building	a	linear-
regression	model	supplies	an	example	of	the	time	involved	in	each	part	of	the
process.	Approximately	70	to	80	percent	of	the	time	is	taken	with	extracting	and
preparing	the	data;	the	remaining	time	is	spent	on	building	the	models.	For
scoring	data,	approximately	90	percent	of	the	time	is	taken	with	extracting	the



data	and	saving	the	scored	data	set	back	into	the	database;	only	10	percent	of	the
time	is	spent	on	actually	scoring.	These	results	are	based	on	data	sets	consisting
of	anywhere	from	50,000	records	up	to	1.5	million	records.	Most	enterprise
database	vendors	have	recognized	the	time	savings	that	would	be	available	if
time	did	not	have	to	be	spent	on	moving	data	and	have	responded	to	this
problem	by	incorporating	data-analysis	functionality	and	ML	algorithms	into
their	database	engines.	The	following	sections	explore	how	ML	algorithms	have
been	integrated	into	modern	databases,	how	data	storage	works	in	the	big-data
world	of	Hadoop,	and	how	using	a	combination	of	these	two	approaches	allows
organizations	to	easily	work	with	all	their	data	using	SQL	as	a	common	language
for	accessing,	analyzing,	and	performing	ML	and	predictive	analytics	in	real
time.

The	Traditional	Database	or	the	Modern	Traditional	Database
Database	vendors	continuously	invest	in	developing	the	scalability,	performance,
security,	and	functionality	of	their	databases.	Modern	databases	are	far	more
advanced	than	traditional	relational	databases.	They	can	store	and	query	data	in
variety	of	different	formats.	In	addition	to	the	traditional	relational	formats,	it	is
also	possible	to	define	object	types,	store	documents,	and	store	and	query	JSON
objects,	spatial	data,	and	so	on.	Most	modern	databases	also	come	with	a	large
number	of	statistical	functions,	so	that	some	have	an	equivalent	number	of
statistical	functions	as	most	statistical	applications.	For	example,	the	Oracle
Database	comes	with	more	than	300	different	statistical	functions	and	the	SQL
language	built	into	it.	These	statistical	functions	cover	the	majority	of	the
statistical	analyses	needed	by	data	science	projects	and	include	most	if	not	all	the
statistical	functions	available	in	other	tools	and	languages,	such	as	R.	Using	the
statistical	functionality	that	is	available	in	the	databases	in	an	organization	may
allow	data	analytics	to	be	performed	in	a	more	efficient	and	scalable	manner
using	SQL.	Furthermore,	most	leading	database	vendors	(including	Oracle,
Microsoft,	IBM,	and	EnterpriseDB)	have	integrated	many	ML	algorithms	into
their	databases,	and	these	algorithms	can	be	run	using	SQL.	ML	that	is	built	into
the	database	engine	and	is	accessible	using	SQL	is	known	as	in-database
machine	learning.	In-database	ML	can	lead	to	quicker	development	of	models
and	quicker	deployment	of	models	and	results	to	applications	and	analytic
dashboards.	The	idea	behind	the	in-database	ML	algorithms	is	captured	in	the
following	directive:	“Move	the	algorithms	to	the	data	instead	of	the	data	to	the
algorithms.”
The	main	advantages	of	using	the	in-database	ML	algorithms	are:



No	data	movement.	Some	data	science	products	require	the	data	to	be
exported	from	the	database	and	converted	to	a	specialized	format	for	input	to
the	ML	algorithms.	With	in-database	ML,	no	data	movement	or	conversion	is
needed.	This	makes	the	entire	process	less	complex,	less	time-consuming,
and	less	error	prone.

Faster	performance.	With	analytical	operations	performed	in	the	database
and	with	no	data	movement,	it	is	possible	to	utilize	the	computing
capabilities	of	the	database	server,	delivering	performance	up	to	100	times
faster	than	the	traditional	approach.	Most	database	servers	have	high
specifications,	with	many	central	processing	units	(CPUs)	and	efficient
memory	management	to	process	data	sets	containing	more	than	one	billion
records.

High	security.	The	database	provides	controlled	and	auditable	access	to	the
data	in	the	database,	accelerating	the	data	scientist’s	productivity	while
maintaining	data	security.	Also,	in-database	ML	avoids	the	physical	security
risks	inherent	in	extracting	and	downloading	data	to	alternative	analytics
servers.	The	traditional	process,	in	contrast,	results	in	the	creation	of	many
copies	(and	potentially	different	versions)	of	data	sets	in	separate	silos	across
the	organization.

Scalability.	A	database	can	easily	scale	the	analytics	as	the	data	volume
increases	if	the	ML	algorithms	are	brought	into	the	database.	The	database
software	is	designed	to	manage	large	volumes	of	data	efficiently,	utilizing	the
multiple	CPUs	and	memory	on	the	server	to	allow	the	ML	algorithms	to	run
in	parallel.	Databases	are	also	very	efficient	at	processing	large	data	sets	that
do	not	fit	easily	into	memory.	Databases	have	more	than	40	years	of
development	work	behind	them	to	ensure	that	they	can	process	datasets
quickly.

Real-time	deployment	and	environments.	The	models	that	are	developed
using	the	in-database	ML	algorithms	can	be	immediately	deployed	and	used
in	real-time	environments.	This	allows	the	integration	of	the	models	into
everyday	applications,	providing	real-time	predictions	to	end	users	and
customers.

Production	deployment.	Models	developed	using	stand-alone	ML	software
may	have	to	be	recoded	into	other	programming	languages	before	they	can
be	deployed	into	enterprise	applications.	This	is	not	the	case	with	in-database
ML.	SQL	is	the	language	of	the	database;	it	can	be	used	and	called	by	any



programming	language	and	data	science	tool.	It	is	then	a	simple	task	to
incorporate	the	in-database	models	into	production	applications.

Many	organizations	are	exploiting	the	benefits	of	in-database	ML.	They	range
from	small	and	medium	organizations	to	large,	big-data-type	organizations.
Some	examples	of	organizations	that	use	in-database	ML	technologies	are:

Fiserv,	an	American	provider	of	financial	services	and	fraud	detection	and
analysis.	Fiserv	migrated	from	using	multiple	vendors	for	data	storage	and
ML	to	using	just	the	ML	capabilities	in	its	database.	By	using	in-database
ML,	the	time	used	for	creating/updating	and	deploying	a	fraud-detection
model	went	from	nearly	a	week	to	just	a	few	hours.

84.51°	(formally	Dunnhumby	USA),	a	customer	science	company.	84.51°
used	many	different	analytic	products	to	create	its	various	customer	models.
It	typically	would	spend	more	than	318	hours	each	month	moving	data	from
its	database	to	its	ML	tools	and	back	again,	plus	an	additional	67	hours	a
month	to	create	models.	When	it	switched	to	using	the	ML	algorithms	in	its
database,	there	was	no	more	need	for	data	movement.	The	data	stayed	in	the
database.	The	company	immediately	saved	more	than	318	hours	of	time	per
month.	Because	it	was	using	its	database	as	a	compute	engine,	it	was	able	to
scale	its	analytics,	and	the	time	taken	to	generate	or	update	its	ML	models
went	from	more	than	67	hours	to	one	hour	per	month.	This	gave	the
company	a	saving	of	sixteen	days	each	month.	It	is	now	able	to	get
significantly	quicker	results	and	can	now	provide	its	customers	with	results
much	sooner	after	they	have	made	a	purchase.

Wargaming,	the	creators	of	World	of	Tanks	and	many	other	games.
Wargaming	uses	in-database	ML	to	model	and	predict	how	to	interact	with
their	more	than	120	million	customers.

Big	Data	Infrastructure
Although	the	traditional	(modern)	database	is	incredibly	efficient	at	processing
transactional	data,	in	the	age	of	big	data	new	infrastructure	is	required	to	manage
all	the	other	forms	of	data	and	for	longer-term	storage	of	the	data.	The	modern
traditional	database	can	cope	with	data	volumes	up	to	a	few	petabytes,	but	for
this	scale	of	data,	traditional	database	solutions	may	become	prohibitively
expensive.	This	cost	issue	is	commonly	referred	to	as	vertical	scaling.	In	the
traditional	data	paradigm,	the	more	data	an	organization	has	to	store	and	process
within	a	reasonable	amount	of	time,	the	larger	the	database	server	required	and



in	turn	the	greater	the	cost	for	server	configuration	and	database	licensing.
Organizations	may	be	able	to	ingest	and	query	one	billion	records	on	a
daily/weekly	bases	using	traditional	databases,	but	for	this	scale	of	processing
they	may	need	to	invest	more	than	$100,000	just	purchasing	the	required
hardware.
Hadoop	is	an	open-source	platform	developed	and	released	by	the	Apache

Software	Foundation.	It	is	a	well-proven	platform	for	ingesting	and	storing	large
volumes	of	data	in	an	efficient	manner	and	can	be	much	less	expensive	than	the
traditional	database	approach.	In	Hadoop,	the	data	are	divided	up	and	partitioned
in	a	variety	of	ways,	and	these	partitions	or	portions	of	data	are	spread	across	the
nodes	of	the	Hadoop	cluster.	The	various	analytic	tools	that	work	with	Hadoop
process	the	data	that	reside	on	each	of	the	nodes	(in	some	instances	these	data
can	be	memory	resident),	thus	allowing	for	speedy	processing	of	the	data
because	the	analytics	is	performed	in	parallel	across	the	nodes.	No	data
extraction	or	ETL	process	is	needed.	The	data	are	analyzed	where	they	are
stored.
Although	Hadoop	is	the	best	known	big-data	processing	framework,	it	is	by	no

means	the	only	one.	Other	big-data	processing	frameworks	include	Storm,
Spark,	and	Flink.	All	of	these	frameworks	are	part	of	the	Apache	software
foundation	projects.	The	difference	between	these	frameworks	lies	in	the	fact
that	Hadoop	is	primarily	designed	for	batch	processing	of	data.	Batch	processing
is	appropriate	where	the	dataset	is	static	during	the	processing	and	where	the
results	of	the	processing	are	not	required	immediately	(or	at	least	are	not
particularly	time	sensitive).	The	Storm	framework	is	designed	for	processing
streams	of	data.	In	stream	processing	each	element	in	the	stream	is	processed	as
it	enters	the	system,	and	consequently	the	processing	operations	are	defined	to
work	on	each	individual	element	in	the	stream	rather	than	on	the	entire	data	set.
For	example,	where	a	batch	process	might	return	an	average	over	a	data	set	of
values,	a	stream	process	will	return	an	individual	label	or	value	for	each	element
in	the	stream	(such	as	calculating	a	sentiment	score	for	each	tweet	in	a	Twitter
stream).	Storm	is	designed	for	real-time	processing	of	data	and	according	to	the
Storm	website,1	it	has	been	benchmarked	at	processing	over	a	million	tuples	per
second	per	node.	Spark	and	Flink	are	both	hybrid	(batch	and	stream)	processing
frameworks.	Spark	is	a	fundamentally	a	batch	processing	framework,	similar	to
Hadoop,	but	also	has	some	stream	processing	capabilities	whereas	Flink	is	a
stream	processing	framework	that	can	also	be	used	for	batch	processing.
Although	these	big-data	processing	frameworks	provide	data	scientists	with	a
choice	of	tools	to	meet	the	specific	big-data	requirements	of	their	project	using
these	frameworks	can	have	the	drawback	that	the	modern	data	scientist	now	has



to	analyze	data	in	two	different	locations,	in	the	traditional	modern	databases	and
in	the	big-data	storage.	The	next	section	looks	at	how	this	particular	issue	is
being	addressed.

The	Hybrid	Database	World
If	an	organization	does	not	have	data	of	the	size	and	scale	that	require	a	Hadoop
solution,	then	it	will	require	only	traditional	database	software	to	manage	its
data.	However,	some	of	the	literature	argues	that	the	data-storage	and	processing
tools	available	in	the	Hadoop	world	will	replace	the	more	traditional	databases.
It	is	very	difficult	to	see	this	happening,	and	more	recently	there	has	been	much
discussion	about	having	a	more	balanced	approach	to	managing	data	in	what	is
called	the	“hybrid	database	world.”	The	hybrid	database	world	is	where
traditional	databases	and	the	Hadoop	world	coexist.
In	the	hybrid	database	world,	the	organization’s	databases	and	Hadoop-stored

data	are	connected	and	work	together,	allowing	the	efficient	processing,	sharing,
and	analysis	of	the	data.	Figure	8	shows	a	traditional	data	warehouse,	but	instead
of	all	the	data	being	stored	in	the	database	or	the	data	warehouse,	the	majority	of
the	data	is	moved	to	Hadoop.	A	connection	is	created	between	the	database	and
Hadoop,	which	allows	the	data	scientist	to	query	the	data	as	if	they	all	are	in	one
location.	The	data	scientist	does	not	need	to	query	the	portion	of	data	that	is	in
the	database	warehouse	and	then	in	a	separate	step	query	the	portion	that	is
stored	in	Hadoop.	He	can	query	the	data	as	he	always	has	done,	and	the	solution
will	identify	what	parts	of	the	query	need	to	be	run	in	each	location.	The	results
of	the	query	arrived	at	in	each	location	will	be	merged	together	and	presented	to
him.	Similarly,	as	the	data	warehouse	grows,	some	the	older	data	will	not	be
queried	as	frequently.	The	hybrid	database	solution	automatically	moves	the	less
frequently	used	data	to	the	Hadoop	environment	and	the	more	frequently	used
data	to	the	warehouse.	The	hybrid	database	automatically	balances	the	location
of	the	data	based	on	the	frequency	of	access	and	the	type	of	data	science	being
performed.



Figure	8	Databases,	data	warehousing,	and	Hadoop	working	together	(inspired
by	a	figure	in	the	Gluent	data	platform	white	paper,	2017,	https://gluent.com/wp-
content/uploads/2017/09/Gluent-Overview.pdf).

One	of	the	advantages	of	this	hybrid	solution	is	that	the	data	scientist	still	uses
SQL	to	query	the	data.	He	does	not	have	to	learn	another	data-query	language	or
have	to	use	a	variety	of	different	tools.	Based	on	current	trends,	the	main
database	vendors,	data-integration	solution	vendors,	and	all	cloud	data-storage
vendors	will	have	solutions	similar	to	this	hybrid	one	in	the	near	future.

Data	Preparation	and	Integration

Data	integration	involves	taking	the	data	from	different	data	sources	and
merging	them	to	give	a	unified	view	of	the	data	from	across	the	organization.	A
good	example	of	such	integration	occurs	with	medical	records.	Ideally,	every
person	would	have	one	health	record,	and	every	hospital,	medical	facility,	and
general	practice	would	use	the	same	patient	identifier	or	same	units	of	measures,
the	same	grading	system,	and	so	on.	Unfortunately,	nearly	every	hospital	has	its
own	independent	patient-management	system,	as	does	each	of	the	medical	labs
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within	the	hospital.	Think	of	the	challenges	in	finding	a	patient’s	record	and
assigning	the	correct	results	to	the	correct	patient.	And	these	are	the	challenges
faced	by	just	one	hospital.	In	scenarios	where	multiple	hospitals	share	patient
data,	the	problem	of	integration	becomes	significant.	It	is	because	of	these	kind
of	challenges	that	the	first	three	CRISP-DM	stages	take	up	to	70	to	80	percent	of
the	total	data	science	project	time,	with	the	majority	of	this	time	being	allocated
to	data	integration.
Integrating	data	from	multiple	data	sources	is	difficult	even	when	the	data	are

structured.	However,	when	some	of	the	newer	big-data	sources	are	involved,
where	semi-	or	unstructured	data	are	the	norm,	then	the	cost	of	integrating	the
data	and	managing	the	architecture	can	become	significant.	An	illustrative
example	of	the	challenges	of	data	integration	is	customer	data.	Customer	data
can	reside	in	many	different	applications	(and	the	applications’	corresponding
databases).	Each	application	will	contain	a	slightly	different	piece	of	customer
data.	For	example,	the	internal	data	sources	might	contain	the	customer	credit
rating,	customer	sales,	payments,	call-center	contact	information,	and	so	on.
Additional	data	about	the	customer	may	also	be	available	from	external	data
sources.	In	this	context,	creating	an	integrated	view	of	a	customer	requires	the
data	from	each	of	these	sources	to	be	extracted	and	integrated.
The	typical	data-integration	process	will	involve	a	number	of	different	stages,

consisting	of	extracting,	cleaning,	standardizing,	transforming,	and	finally
integrating	to	create	a	single	unified	version	of	the	data.	Extracting	data	from
multiple	data	sources	can	be	challenging	because	many	data	sources	can	be
accessed	only	by	using	an	interface	particular	to	that	data	source.	As	a
consequence,	data	scientists	need	to	have	a	broad	skill	set	to	be	able	to	interact
with	each	of	the	data	sources	in	order	to	obtain	the	data.
Once	data	have	been	extracted	from	a	data	source,	the	quality	of	the	data	needs

to	be	checked.	Data	cleaning	is	a	process	that	detects,	cleans,	or	removes	corrupt
or	inaccurate	data	from	the	extracted	data.	For	example,	customer	address
information	may	have	to	be	cleaned	in	order	to	convert	it	into	a	standardized
format.	In	addition,	there	may	be	duplicate	data	in	the	data	sources,	in	which
case	it	is	necessary	to	identify	the	correct	customer	record	that	should	be	used
and	to	remove	all	the	other	records	from	the	data	sets.	It	is	important	to	ensure
that	the	values	used	in	a	data	set	are	consistent.	For	example,	one	source
application	might	use	numeric	values	to	represent	a	customer	credit	rating,	but
another	might	have	a	mixture	of	numeric	and	character	values.	In	such	a
scenario,	a	decision	regarding	what	value	to	use	is	needed,	and	then	the	other
representations	should	be	mapped	into	the	standardized	representation.	For
example,	imagine	one	of	the	attributes	in	the	data	set	is	a	customer’s	shoe	size.



Customers	can	buy	shoes	from	various	regions	around	the	world,	but	the
numbering	system	used	for	shoe	sizes	in	Europe,	the	United	States,	the	United
Kingdom,	and	other	countries	are	slightly	different.	Prior	to	doing	data	analysis
and	modeling,	these	data	values	need	to	be	standardized.
Data	transformation	involves	the	changing	or	combining	of	the	data	from	one

value	to	another.	A	wide	variety	of	techniques	can	be	used	during	this	step	and
include	data	smoothing,	binning,	and	normalization	as	well	as	writing	custom
code	to	perform	a	particular	transformation.	A	common	example	of	data
transformation	is	with	processing	a	customer’s	age.	In	many	data	science	tasks,
precisely	distinguishing	between	customer	ages	is	not	particularly	helpful.	The
difference	between	a	42-year-old	customer	and	a	43-year-old	customer	is
generally	not	significant,	although	differentiating	between	a	42-year-old
customer	and	a	52-year-old	customer	may	be	informative.	As	a	consequence,	a
customer’s	age	is	often	transformed	from	a	raw	age	into	a	general	age	range.
This	process	of	converting	ages	into	age	ranges	is	an	example	of	a	data-
transformation	technique	called	binning.	Although	binning	is	relatively
straightforward	from	a	technical	perspective,	the	challenge	here	is	to	identify	the
most	appropriate	range	thresholds	to	apply	during	binning.	Applying	the	wrong
thresholds	may	obscure	important	distinctions	in	the	data.	Finding	appropriate
thresholds,	however,	may	require	domain	specific	knowledge	or	a	process	of
trial-and-error	experimentation.
The	final	step	in	data	integration	involves	creating	the	data	that	are	used	as

input	to	the	ML	algorithms.	This	data	is	known	as	the	analytics	base	table.

Creating	the	Analytics	Base	Table

The	most	important	step	in	creating	the	analytics	base	table	is	the	selection	of	the
attributes	that	will	be	included	in	the	analysis.	The	selection	is	based	on	domain
knowledge	and	on	an	analysis	of	the	relationships	between	attributes.	Consider,
for	example,	a	scenario	where	the	analysis	is	focused	on	customers	of	a	service.
In	this	scenario,	some	of	the	frequently	used	domain	concepts	that	will	inform
the	design	and	selection	of	attributes	include	customer	contract	details,
demographics,	usage,	changes	in	usage,	special	usage,	life-cycle	phase,	network
links,	and	so	on.	Furthermore,	attributes	that	are	found	to	have	a	high	correlation
with	other	attributes	are	likely	to	be	redundant,	and	so	one	of	the	correlated
attributes	should	be	excluded.	Removing	redundant	features	can	result	in	simpler
models	which	are	easier	to	understand,	and	also	reduces	the	likelihood	of	an	ML



algorithm	returning	a	model	that	is	fitted	to	spurious	patterns	in	the	data.	The	set
of	attributes	selected	for	inclusion	define	what	is	known	as	the	analytics	record.
An	analytics	record	typically	includes	both	raw	and	derived	attributes.	Each
instance	in	the	analytics	base	table	is	represented	by	one	analytics	record,	so	the
set	of	attributes	included	in	the	analytics	record	defines	the	representation	of	the
instances	the	analysis	will	be	carried	out	on.
After	the	analytics	record	has	been	designed,	a	set	of	records	needs	to

extracted	and	aggregated	to	create	a	data	set	for	analysis.	When	these	records
have	been	created	and	stored—for	example,	in	a	database—this	data	set	is
commonly	referred	to	as	the	analytics	base	table.	The	analytics	base	table	is	the
data	set	that	is	used	as	input	to	the	ML	algorithms.	The	next	chapter	introduces
the	field	of	ML	and	describes	some	of	the	most	popular	ML	algorithms	used	in
data	science.

Note

1. See	Storm	website,	at	http://storm.apache.org.

http://storm.apache.org


4 Machine	Learning	101

Data	science	is	best	understood	as	a	partnership	between	a	data	scientist	and	a
computer.	In	chapter	2,	we	described	the	process	the	data	scientist	follows:	the
CRISP-DM	life	cycle.	CRISP-DM	defines	a	sequence	of	decisions	the	data
scientist	has	to	make	and	the	activities	he	should	engage	in	to	inform	and
implement	these	decisions.	In	CRISP-DM,	the	major	tasks	for	a	data	scientist	are
to	define	the	problem,	design	the	data	set,	prepare	the	data,	decide	on	the	type	of
data	analysis	to	apply,	and	evaluate	and	interpret	the	results	of	the	data	analysis.
What	the	computer	brings	to	this	partnership	is	the	ability	to	process	data	and
search	for	patterns	in	the	data.	Machine	learning	is	the	field	of	study	that
develops	the	algorithms	that	the	computers	follow	in	order	to	identify	and	extract
patterns	from	data.	ML	algorithms	and	techniques	are	applied	primarily	during
the	modeling	stage	of	CRISP-DM.	ML	involves	a	two-step	process.
First,	an	ML	algorithm	is	applied	to	a	data	set	to	identify	useful	patterns	in	the

data.	These	patterns	can	be	represented	in	a	number	of	different	ways.	We
describe	some	popular	representations	later	in	this	chapter,	but	they	include
decision	trees,	regression	models,	and	neural	networks.	These	representations	of
patterns	are	known	as	“models,”	which	is	why	this	stage	of	the	CRISP-DM	life
cycle	is	known	at	the	“modeling	stage.”	Simply	put,	ML	algorithms	create
models	from	data,	and	each	algorithm	is	designed	to	create	models	using	a
particular	representation	(neural	network	or	decision	tree	or	other).
Second,	once	a	model	has	been	created,	it	is	used	for	analysis.	In	some	cases,

the	structure	of	the	model	is	what	is	important.	A	model	structure	can	reveal
what	the	important	attributes	are	in	a	domain.	For	example,	in	a	medical	domain
we	might	apply	an	ML	algorithm	to	a	data	set	of	stroke	patients	and	use	the
structure	of	the	model	to	identify	the	factors	that	have	a	strong	association	with
stroke.	In	other	cases,	a	model	is	used	to	label	or	classify	new	examples.	For
instance,	the	primary	purpose	of	a	spam-filter	model	is	to	label	new	emails	as
either	spam	or	not	spam	rather	than	to	reveal	the	defining	attributes	of	spam
email.



Supervised	versus	Unsupervised	Learning

The	majority	of	ML	algorithms	can	be	classified	as	either	supervised	learning	or
unsupervised	learning.	The	goal	of	supervised	learning	is	to	learn	a	function	that
maps	from	the	values	of	the	attributes	describing	an	instance	to	the	value	of
another	attribute,	known	as	the	target	attribute,	of	that	instance.	For	example,
when	supervised	learning	is	used	to	train	a	spam	filter,	the	algorithm	attempts	to
learn	a	function	that	maps	from	the	attributes	describing	an	email	to	a	value
(spam/not	spam)	for	the	target	attribute;	the	function	the	algorithm	learns	is	the
spam-filter	model	returned	by	the	algorithm.	So	in	this	context	the	pattern	that
the	algorithm	is	looking	for	in	the	data	is	the	function	that	maps	from	the	values
of	the	input	attributes	to	the	values	of	the	target	attribute,	and	the	model	that	the
algorithm	returns	is	a	computer	program	that	implements	this	function.
Supervised	learning	works	by	searching	through	lots	of	different	functions	to
find	the	function	that	best	maps	between	the	inputs	and	output.	However,	for	any
data	set	of	reasonable	complexity	there	are	so	many	combinations	of	inputs	and
possible	mappings	to	outputs	that	an	algorithm	cannot	try	all	possible	functions.
As	a	consequence,	each	ML	algorithm	is	designed	to	look	at	or	prefer	certain
types	of	functions	during	its	search.	These	preferences	are	known	as	the
algorithm’s	learning	bias.	The	real	challenge	in	using	ML	is	to	find	the
algorithm	whose	learning	bias	is	the	best	match	for	a	particular	data	set.
Generally,	this	task	involves	experiments	with	a	number	of	different	algorithms
to	find	out	which	one	works	best	on	that	data	set.
Supervised	learning	is	“supervised”	because	each	of	the	instances	in	the	data

set	lists	both	the	input	values	and	the	output	(target)	value	for	each	instance.	So
the	learning	algorithm	can	guide	its	search	for	the	best	function	by	checking	how
each	function	it	tries	matches	with	the	data	set,	and	at	the	same	time	the	data	set
acts	as	a	supervisor	for	the	learning	process	by	providing	feedback.	Obviously,
for	supervised	learning	to	take	place,	each	instance	in	the	data	set	must	be
labeled	with	the	value	of	the	target	attribute.	Often,	however,	the	reason	a	target
attribute	is	interesting	is	that	it	is	not	easy	to	directly	measure,	and	therefore	it	is
not	possible	to	easily	create	a	data	set	of	labeled	instances.	In	such	scenarios,	a
great	deal	of	time	and	effort	is	required	to	create	a	data	set	with	the	target	values
before	a	model	can	be	trained	using	supervised	learning.
In	unsupervised	learning,	there	is	no	target	attribute.	As	a	consequence,

unsupervised-learning	algorithms	can	be	used	without	investing	the	time	and
effort	in	labeling	the	instances	of	the	data	set	with	a	target	attribute.	However,



not	having	a	target	attribute	also	means	that	learning	becomes	more	difficult:
instead	of	the	specific	problem	of	searching	for	a	mapping	from	inputs	to	output
that	matches	the	data,	the	algorithm	has	the	more	general	task	of	looking	for
regularities	in	the	data.	The	most	common	type	of	unsupervised	learning	is
cluster	analysis,	where	the	algorithm	looks	for	clusters	of	instances	that	are	more
similar	to	each	other	than	they	are	to	other	instances	in	the	data.	These	clustering
algorithms	often	begin	by	guessing	a	set	of	clusters	and	then	iteratively	updating
the	clusters	(dropping	instances	from	one	cluster	and	adding	them	to	another)	so
as	to	increase	both	the	within-cluster	similarity	and	the	diversity	across	clusters.
A	challenge	for	clustering	is	figuring	out	how	to	measure	similarity.	If	all	the

attributes	in	a	data	set	are	numeric	and	have	similar	ranges,	then	it	probably
makes	sense	just	to	calculate	the	Euclidean	distance	(better	known	as	the
straight-line	distance)	between	the	instances	(or	rows).	Rows	that	are	close
together	in	the	Euclidean	space	are	then	treated	as	similar.	A	number	of	factors,
however,	can	make	the	calculation	of	similarity	between	rows	complex.	In	some
data	sets,	different	numeric	attributes	have	different	ranges,	with	the	result	that	a
variation	in	row	values	in	one	attribute	may	not	be	as	significant	as	a	variation	of
a	similar	magnitude	in	another	attribute.	In	these	cases,	the	attributes	should	be
normalized	so	that	they	all	have	the	same	range.	Another	complicating	factor	in
calculating	similarity	is	that	things	can	be	deemed	similar	in	many	different
ways.	Some	attributes	are	sometimes	more	important	than	other	attributes,	so	it
might	make	sense	to	weight	some	attributes	in	the	distance	calculations,	or	it
may	be	that	the	data	set	includes	nonnumeric	data.	These	more	complex
scenarios	may	require	the	design	of	bespoke	similarity	metrics	for	the	clustering
algorithm	to	use.
Unsupervised	learning	can	be	illustrated	with	a	concrete	example.	Imagine	we

are	interested	in	analyzing	the	causes	of	Type	2	diabetes	in	white	American	adult
males.	We	would	begin	by	constructing	a	data	set,	with	each	row	representing
one	person	and	each	column	representing	an	attribute	that	we	believe	are
relevant	for	the	study.	For	this	example,	we	will	include	the	following	attributes:
an	individual’s	height	in	meters	and	weight	in	kilos,	the	number	of	minutes	he
exercises	per	week,	his	shoe	size,	and	the	likelihood	that	he	will	develop
diabetes	expressed	as	a	percentage	based	on	a	number	of	clinical	tests	and
lifestyle	surveys.	Table	2	illustrates	a	snippet	from	this	data	set.	Obviously,	other
attributes	could	be	included—for	example,	a	person’s	age—and	some	attributes
could	be	removed—for	example,	shoe	size,	which	wouldn’t	be	particularly
relevant	in	determining	whether	someone	will	develop	diabetes.	As	we	discussed
in	chapter	2,	the	choice	of	which	attributes	to	include	and	exclude	from	a	data	set
is	a	key	task	in	data	science,	but	for	the	purposes	of	this	discussion	we	will	work



with	the	data	set	as	is.

Table	2	Diabetes	Study	Data	Set

An	unsupervised	clustering	algorithm	will	look	for	groups	of	rows	that	are
more	similar	to	each	other	than	they	are	to	the	other	rows	in	the	data.	Each	of
these	groups	of	similar	rows	defines	a	cluster	of	similar	instances.	For	instance,
an	algorithm	can	identify	causes	of	a	disease	or	disease	comorbidities	(diseases
that	occur	together)	by	looking	for	attribute	values	that	are	relatively	frequent
within	a	cluster.	The	simple	idea	of	looking	for	clusters	of	similar	rows	is	very
powerful	and	has	applications	across	many	areas	of	life.	Another	application	of
clustering	rows	is	making	product	recommendations	to	customers.	If	a	customer
liked	a	book,	song,	or	movie,	then	he	may	enjoy	another	book,	song,	or	movie
from	the	same	cluster.

Learning	Prediction	Models

Prediction	is	the	task	of	estimating	the	value	of	a	target	attribute	for	a	given
instance	based	on	the	values	of	other	attributes	(or	input	attributes)	for	that
instance.	It	is	the	problem	that	supervised	ML	algorithms	solve:	they	generate
prediction	models.	The	spam-filter	example	we	used	to	illustrate	supervised
learning	is	also	applicable	here:	we	use	supervised	learning	to	train	a	spam-filter
model,	and	the	spam-filter	model	is	a	prediction	model.	The	typical	use	case	of	a
prediction	model	is	to	estimate	the	target	attribute	for	new	instances	that	are	not
in	the	training	data	set.	Continuing	our	spam	example,	we	train	our	spam	filter
(prediction	model)	on	a	data	set	of	old	emails	and	then	use	the	model	to	predict
whether	new	emails	are	spam	or	not	spam.	Prediction	problems	are	possibly	the
most	popular	type	of	problem	that	ML	is	used	for,	so	the	rest	of	this	chapter
focuses	on	prediction	as	the	case	study	for	introducing	ML.	We	begin	our
introduction	to	prediction	models	with	a	concept	fundamental	to	prediction:



correlation	analysis.	Then	we	explain	how	supervised	ML	algorithms	work	to
create	different	types	of	popular	prediction	models,	including	linear-regression
models,	neural	network	models,	and	decision	trees.

Correlations	Are	Not	Causations,	but	Some	Are	Useful
A	correlation	describes	the	strength	of	association	between	two	attributes.1	In	a
general	sense,	a	correlation	can	describe	any	type	of	association	between	two
attributes.	The	term	correlation	also	has	a	specific	statistical	meaning,	in	which
it	is	often	used	as	shorthand	for	“Pearson	correlation.”	A	Pearson	correlation
measures	the	strength	of	a	linear	relationship	between	two	numeric	attributes.	It
ranges	in	value	from	−1	to	+1.	The	letter	r	is	used	to	denote	the	Pearson	value	or
coefficient	between	two	attributes.	A	coefficient	of	r	=	0	indicates	that	the	two
attributes	are	not	correlated.	A	coefficient	of	r	=	+1	indicates	that	the	two
attributes	have	a	perfect	positive	correlation,	meaning	that	every	change	in	one
attribute	is	accompanied	by	an	equivalent	change	in	the	other	attribute	in	the
same	direction.	A	coefficient	of	r	=	−1	indicates	that	the	two	attributes	have	a
perfect	negative	correlation,	meaning	that	every	change	in	one	attribute	is
accompanied	by	the	opposite	change	in	the	other	attribute.	The	general
guidelines	for	interpreting	Pearson	coefficients	are	that	a	value	of	r	≈	±0.7
indicates	a	strong	linear	relationship	between	the	attributes,	r	≈	±0.5	indicates	a
moderate	linear	relationship,	r	≈	±0.3	indicates	a	weak	relationship,	and	r	≈	0
indicates	no	relationship	between	the	attributes.
In	the	case	of	the	diabetes	study,	from	our	knowledge	of	how	humans	are

physically	made	we	would	expect	that	there	will	be	relationships	between	some
of	the	attributes	listed	in	table	2.	For	example,	it	is	generally	the	case	that	the
taller	someone	is,	the	larger	her	shoe	size	is.	We	would	also	expect	that	the	more
someone	exercises,	the	lighter	she	will	be,	with	the	caveat	that	a	tall	person	is
likely	to	be	heavier	than	a	shorter	person	who	exercises	the	same	amount.	We
would	also	expect	that	there	will	be	no	obvious	relationship	between	someone’s
shoe	size	and	the	amount	she	exercises.	Figure	9	presents	three	scatterplots	that
illustrate	how	these	intuitions	are	reflected	in	the	data.	The	scatterplot	at	the	top
shows	how	the	data	spread	out	if	the	plotting	is	based	on	shoe	size	and	height.
There	is	a	clear	pattern	in	this	scatterplot:	the	data	go	from	the	bottom-left	corner
to	the	top-right	corner,	indicating	the	relationship	that	as	people	get	taller	(or	as
we	move	to	the	right	on	the	x	axis),	they	also	tend	to	wear	larger	shoes	(we	move
up	on	the	y	axis).	A	pattern	of	data	generally	going	from	bottom	left	to	top	right
in	a	scatterplot	is	indicative	of	a	positive	correlation	between	the	two	attributes.
If	we	compute	the	Pearson	correlation	between	shoe	size	and	height,	the



correlation	coefficient	is	r	=	0.898,	indicating	a	strong	positive	correlation
between	this	pair	of	attributes.	The	middle	scatterplot	shows	how	the	data	spread
out	when	we	plot	weight	and	exercise.	Here	the	general	pattern	is	in	the	opposite
direction,	from	top	left	to	bottom	right,	indicating	a	negative	correlation:	the
more	people	exercise,	the	lighter	they	are.	The	Pearson	correlation	coefficient	for
this	pair	of	attributes	is	r	=	−0.710,	indicating	a	strong	negative	correlation.	The
final	scatterplot,	at	the	bottom,	plots	exercise	and	shoe	size.	The	data	are
relatively	randomly	distributed	in	this	plot,	and	the	Pearson	correlation
coefficient	for	this	pair	of	attributes	is	r	=	−0.272,	indicating	no	real	correlation.

Figure	9	Scatterplots	of	shoe	size	and	height,	weight	and	exercise,	and	shoe
size	and	exercise.



The	fact	that	the	definition	of	a	statistical	Pearson	correlation	is	between	two
attributes	might	appear	to	limit	the	application	of	statistical	correlation	to	data
analysis	to	just	pairs	of	attributes.	Fortunately,	however,	we	can	circumvent	this
problem	by	using	functions	over	sets	of	attributes.	In	chapter	2,	we	introduced
BMI	as	a	function	of	a	person’s	weight	and	height.	Specifically,	it	is	the	ratio	of
his	weight	(in	kilograms)	divided	by	his	height	(in	meters)	squared.	BMI	was
invented	in	the	nineteenth	century	by	a	Belgian	mathematician,	Adolphe
Quetelet,	and	is	used	to	categorize	individuals	as	underweight,	normal	weight,
overweight,	or	obese.	The	ratio	of	weight	and	height	is	used	because	BMI	is
designed	to	have	a	similar	value	for	people	who	are	in	the	same	category
(underweight,	normal	weight,	overweight,	or	obese)	irrespective	of	their	height.
We	know	that	weight	and	height	are	positively	correlated	(generally,	the	taller
someone	is,	the	heavier	he	is),	so	by	dividing	weight	by	height,	we	control	for
the	effect	of	height	on	weight.	We	divide	by	the	square	of	the	height	because
people	get	wider	as	they	get	taller,	so	squaring	the	height	is	an	attempt	to	account
for	a	person’s	total	volume	in	the	calculation.	Two	aspects	of	BMI	are	interesting
for	our	discussion	about	correlation	between	multiple	attributes.	First,	BMI	is	a
function	that	takes	a	number	of	attributes	as	input	and	maps	them	to	a	new	value.
In	effect,	this	mapping	creates	a	new	derived	(as	opposed	to	raw)	attribute	in	the
data.	Second,	because	a	person’s	BMI	is	a	single	numeric	value,	we	can	calculate
the	correlation	between	it	and	other	attributes.
In	our	case	study	of	the	causes	of	Type	2	diabetes	in	white	American	adult

males,	we	are	interested	in	identifying	if	any	of	the	attributes	have	a	strong
correlation	with	the	target	attribute	describing	a	person’s	likelihood	of
developing	diabetes.	Figure	10	presents	three	more	scatterplots,	each	plotting	the
correlation	between	the	target	attribute	(diabetes)	and	another	attribute:	height,
weight,	and	BMI.	In	the	scatterplot	of	height	and	diabetes,	there	doesn’t	appear
to	be	any	particular	pattern	in	the	data	indicating	that	there	is	no	real	correlation
between	these	two	attributes	(the	Pearson	coefficient	is	r	=	−0.277).	The	middle
scatterplot	shows	the	distribution	of	the	data	plotted	using	weight	and	diabetes.
The	spread	of	the	data	indicates	a	positive	correlation	between	these	two
attributes:	the	more	someone	weighs,	the	more	likely	she	is	to	develop	diabetes
(the	Pearson	coefficient	is	r	=	0.655).	The	bottom	scatterplot	shows	the	data	set
plotted	using	BMI	and	diabetes.	The	pattern	in	this	scatterplot	is	similar	to	the
middle	scatterplot:	the	data	spread	from	bottom	left	to	top	right,	indicating	a
positive	correlation.	In	this	scatterplot,	however,	the	instances	are	more	tightly
packed	together,	indicating	that	the	correlation	between	BMI	and	diabetes	is
stronger	than	the	correlation	between	weight	and	diabetes.	In	fact,	the	Pearson
coefficient	for	diabetes	and	BMI	for	this	data	set	is	r	=	0.877.



Figure	10	Scatterplots	of	the	likelihood	of	diabetes	with	respect	to	height,
weight,	and	BMI.

The	BMI	example	illustrates	that	it	is	possible	to	create	a	new	derived	attribute
by	defining	a	function	that	takes	multiple	attributes	as	input.	It	also	shows	that	it
is	possible	to	calculate	a	Pearson	correlation	between	this	derived	attribute	and
another	attribute	in	the	data	set.	Furthermore,	a	derived	attribute	can	actually
have	a	higher	correlation	with	a	target	attribute	than	any	of	the	attributes	used	to
generate	the	derived	attribute	have	with	the	target.	One	way	of	understanding
why	BMI	has	a	higher	correlation	with	the	diabetes	attribute	compared	to	the
correlation	for	either	height	or	weight	is	that	the	likelihood	of	someone
developing	diabetes	is	dependent	on	the	interaction	between	height	and	weight,



and	the	BMI	attribute	models	this	interaction	appropriately	for	diabetes.
Clinicians	are	interested	in	people’s	BMI	because	it	gives	them	more
information	about	the	likelihood	of	someone	developing	Type	2	diabetes	than
either	just	the	person’s	height	or	just	his	weight	does	independently.
We	have	already	noted	that	attribute	selection	is	a	key	task	in	data	science.	So

is	attribute	design.	Designing	a	derived	attribute	that	has	a	strong	correlation
with	an	attribute	we	are	interested	in	is	often	where	the	real	value	of	data	science
is	found.	Once	you	know	the	correct	attributes	to	use	to	represent	the	data,	you
are	able	to	build	accurate	models	relatively	quickly.	Uncovering	and	designing
the	right	attributes	is	the	difficult	part.	In	the	case	of	BMI,	a	human	designed	this
derived	attribute	in	the	nineteenth	century.	However,	ML	algorithms	can	learn
interactions	between	attributes	and	create	useful	derived	attributes	by	searching
through	different	combinations	of	attributes	and	checking	the	correlation
between	these	combinations	and	the	target	attribute.	This	is	why	ML	is	useful	in
contexts	where	many	weak	interacting	attributes	contribute	to	the	process	we	are
trying	to	understand.
Identifying	an	attribute	(raw	or	derived)	that	has	a	high	correlation	with	a

target	attribute	is	useful	because	the	correlated	attribute	may	give	us	insight	into
the	process	that	causes	the	phenomenon	the	target	attribute	represents:	the	fact
that	BMI	is	strongly	correlated	with	the	likelihood	of	a	person’s	developing
diabetes	indicates	that	it	is	not	weight	by	itself	that	contributes	to	a	person’s
developing	diabetes	but	whether	that	person	is	overweight.	Also,	if	an	input
attribute	is	highly	correlated	with	a	target	attribute,	it	is	likely	to	be	a	useful
input	into	the	prediction	model.	Similar	to	correlation	analysis,	prediction
involves	analyzing	the	relationships	between	attributes.	In	order	to	be	able	to
map	from	the	values	of	a	set	of	input	attributes	to	a	target	attribute,	there	must	be
a	correlation	between	the	input	attributes	(or	some	derived	function	over	them)
and	the	target	attribute.	If	this	correlation	does	not	exist	(or	cannot	be	found	by
the	algorithm),	then	the	input	attributes	are	irrelevant	for	the	prediction	problem,
and	the	best	a	model	can	do	is	to	ignore	those	inputs	and	always	predict	the
central	tendency	of	that	target2	in	the	data	set.	Conversely,	if	a	strong	correlation
does	exist	between	input	attributes	and	the	target,	then	it	is	likely	that	an	ML
algorithm	will	be	able	to	generate	a	very	accurate	prediction	model.

Linear	Regression
When	a	data	set	is	composed	of	numeric	attributes,	then	prediction	models	based
on	regression	are	frequently	used.	Regression	analysis	estimates	the	expected	(or
average)	value	of	a	numeric	target	attribute	when	all	the	input	attributes	are



fixed.	The	first	step	in	a	regression	analysis	is	to	hypothesize	the	structure	of	the
relationship	between	the	input	attributes	and	the	target.	Then	a	parameterized
mathematical	model	of	the	hypothesized	relationship	is	defined.	This
parameterized	model	is	called	a	regression	function.	You	can	think	of	a
regression	function	as	a	machine	that	converts	inputs	to	an	output	value	and	of
the	parameters	as	the	settings	that	control	the	behavior	of	a	machine.	A
regression	function	may	have	multiple	parameters,	and	the	focus	of	regression
analysis	is	to	find	the	correct	settings	for	these	parameters.
It	is	possible	to	hypothesize	and	model	many	different	types	of	relationships

between	attributes	using	regression	analysis.	In	principle,	the	only	constraint	on
the	structure	of	the	relationship	that	can	be	modeled	is	the	ability	to	define	the
appropriate	regression	function.	In	some	domains,	there	may	be	strong
theoretical	reasons	to	assert	a	particular	type	of	relationship,	but	in	the	absence
of	this	type	of	domain	theory	it	is	good	practice	to	begin	by	assuming	the
simplest	form	of	relationship—namely,	a	linear	relationship—and	then,	if	need
be,	progress	to	model	more	complex	relationships.	One	reason	for	starting	with	a
linear	relationship	is	that	linear-regression	functions	are	relatively	easy	to
interpret.	The	other	reason	is	the	commonsense	notion	that	keeping	things	as
simple	as	possible	is	generally	a	good	idea.
When	a	linear	relationship	is	assumed,	the	regression	analysis	is	called	linear

regression.	The	simplest	application	of	linear	regression	is	modeling	the
relationship	between	two	attributes:	an	input	attribute	X	and	a	target	attribute	Y.
In	this	simple	linear-regression	problem,	the	regression	function	has	the
following	form:

This	regression	function	is	just	the	equation	of	a	line	(often	written	as	y	=	mx
+	c)	that	is	familiar	to	most	people	from	high	school	geometry.3	The	variables
ω0	and	ω1	are	the	parameters	of	the	regression	function.	Modifying	these
parameters	changes	how	the	function	maps	from	the	input	X	to	the	output	Y.	The
parameter	ω0	is	the	y-intercept	(or	c	in	high	school	geometry)	that	specifies
where	the	line	crosses	the	vertical	y	axis	when	X	is	equal	to	zero.	The	parameter
ω1	defines	the	slope	of	the	line	(i.e.,	it	is	equivalent	to	m	in	the	high	school
version).
In	regression	analysis,	the	parameters	of	a	regression	function	are	initially

unknown.	Setting	the	parameters	of	a	regression	function	is	equivalent	to
searching	for	the	line	that	best	fits	the	data.	The	strategy	for	setting	these
parameters	begins	by	guessing	parameters	values	and	then	iteratively	updating



the	parameters	so	as	to	reduce	the	overall	error	of	the	function	on	the	data	set.
The	overall	error	is	calculated	in	three	steps:

1.	 The	function	is	applied	to	the	data	set,	and	for	each	instance	in	the	data	set	it
estimates	the	value	of	the	target	attribute.

2.	 The	error	of	the	function	for	each	instance	is	calculated	by	subtracting	the
estimated	value	of	the	target	attribute	from	the	actual	value	of	the	target
attribute.

3.	 The	error	of	the	function	for	each	instance	is	squared,	and	then	these	squared
values	are	summed.

The	error	of	the	function	for	each	instance	is	squared	in	step	3	so	that	the	error
in	the	instances	where	the	function	overestimates	the	target	doesn’t	cancel	out
with	the	error	when	it	underestimates.	Squaring	the	error	makes	the	error
positive	in	both	cases.	This	measure	of	error	is	known	as	the	sum	of	squared
errors	(SSE),	and	the	strategy	of	fitting	a	linear	function	by	searching	for	the
parameters	that	minimize	the	SSE	is	known	as	least	squares.	The	SSE	is	defined
as

where	the	data	set	contains	n	instances,	targeti	is	the	value	of	the	target	attribute
for	instance	i	in	the	data	set,	and	predictioni	is	the	estimate	of	the	target	by
function	for	the	same	instance.
To	create	a	linear-regression	prediction	model	that	estimates	the	likelihood	of

an	individual’s	developing	diabetes	with	respect	to	his	BMI,	we	replace	X	with
the	BMI	attribute,	Y	with	the	diabetes	attribute,	and	apply	the	least-squares
algorithm	to	find	the	best-fit	line	for	the	diabetes	data	set.	Figure	11a	illustrates
this	best-fit	line	and	where	it	lies	relative	to	the	instances	in	the	data	set.	In
figure	11b,	the	dashed	lines	show	the	error	(or	residual)	for	each	instance	for	this
line.	Using	the	least-squares	approach,	the	best-fit	line	is	the	line	that	minimizes
the	sum	of	the	squared	residuals.	The	equation	for	this	line	is

.



Figure	11	(a)	The	best-fit	regression	line	for	the	model	“Diabetes	=	−7.38431
+	0.55593	BMI.”	(b)	The	dashed	vertical	lines	illustrate	the	residual	for	each
instance.

The	slope	parameter	value	ω1	=	0.55593	indicates	that	for	each	increase	of	one
unit	in	BMI,	the	model	increases	the	estimated	likelihood	of	a	person	developing
diabetes	by	a	little	more	than	half	a	percent.	In	order	to	predict	the	likelihood	of
a	person’s	developing	diabetes,	we	simply	input	his	BMI	into	the	model.	For
example,	when	BMI	equals	20,	the	model	returns	a	prediction	of	a	3.73	percent
likelihood	for	the	diabetes	attribute,	and	when	BMI	equals	21,	the	model	predicts
a	4.29	percent	likelihood.4
Under	the	hood,	a	linear-regression	model	fitted	using	the	least-squares

method	is	actually	calculating	a	weighted	average	over	the	instances.	In	fact,	the
intercept	parameter	value	ω0	=	−7.38431	ensures	that	the	best-fit	line	goes
through	the	point	defined	by	the	average	BMI	value	and	average	diabetes	value
for	the	data	set.	If	the	average	BMI	value	in	the	data	set	(BMI	=	24.0932)	is
entered,	the	model	estimates	a	4.29	percent	likelihood	for	the	diabetes	attribute,
which	is	the	average	value	for	diabetes	in	the	data	set.



The	weighting	of	the	instances	is	based	on	the	distance	of	the	instance	from
the	line:	the	farther	an	instance	is	away	from	the	line,	the	larger	the	residual	for
that	instance,	and	the	algorithm	will	weight	that	instance	by	the	residual	squared.
One	consequence	of	this	weighting	is	that	instances	that	have	extreme	values
(outliers)	can	have	a	disproportionately	large	impact	on	the	line-fitting	process,
resulting	in	the	line	being	dragged	away	from	the	other	instances.	Thus,	it	is
important	to	check	for	outliers	in	a	data	set	prior	to	fitting	a	line	to	the	data	set
(or,	in	other	words,	training	a	linear	regression	function	on	the	data	set)	using	the
least	squares	algorithm.
Linear-regression	models	can	be	extended	to	take	multiple	inputs.	A	new

parameter	is	added	to	the	model	for	each	new	input	attribute,	and	the	equation
for	the	model	is	updated	to	include	the	result	of	multiplying	the	new	attribute	by
the	new	parameter	within	the	summation.	For	example,	to	extend	the	model	to
include	the	exercise	and	weight	attributes	as	input,	the	structure	of	the	regression
function	becomes

.
In	statistics,	a	regression	function	that	maps	from	multiple	inputs	to	a	single

output	in	this	way	is	known	as	a	multiple	linear	regression	function.	The
structure	of	a	multi-input	regression	function	is	the	basis	for	a	range	of	ML
algorithms,	including	neural	networks.
Correlation	and	regression	are	similar	concepts	insofar	as	both	are	techniques

that	focus	on	the	relationship	across	columns	in	the	data	set.	Correlation	is
focused	on	exploring	whether	a	relationship	exists	between	two	attributes,	and
regression	is	focused	on	modeling	an	assumed	relationship	between	attributes
with	the	purpose	of	being	able	to	estimate	the	value	of	one	target	attribute	given
the	values	of	one	or	more	input	attributes.	In	the	specific	cases	of	Pearson
correlation	and	linear	regression,	a	Pearson	correlation	measures	the	degree	to
which	two	attributes	have	a	linear	relationship,	and	linear	regression	trained
using	least	squares	is	a	process	to	find	the	best-fit	line	that	predicts	the	value	of
one	attribute	given	the	value	of	another.

Neural	Networks	and	Deep	Learning
A	neural	network	consists	of	a	set	of	neurons	that	are	connected	together.	A
neuron	takes	a	set	of	numeric	values	as	input	and	maps	them	to	a	single	output
value.	At	its	core,	a	neuron	is	simply	a	multi-input	linear-regression	function.
The	only	significant	difference	between	the	two	is	that	in	a	neuron	the	output	of
the	multi-input	linear-regression	function	is	passed	through	another	function	that



is	called	the	activation	function.
These	activation	functions	apply	a	nonlinear	mapping	to	the	output	of	the

multi-input	linear-regression	function.	Two	commonly	used	activation	functions
are	the	logistic	function	and	tanh	function	(see	figure	12).	Both	functions	take	a
single	value	x	as	input;	in	a	neuron,	this	x	value	is	the	output	from	the	multi-
input	linear-regression	function	the	neuron	has	applied	to	its	inputs.	Also,	both
functions	use	Euler’s	number	e,	which	is	approximately	equal	to	2.71828182.
These	functions	are	sometimes	called	squashing	functions	because	they	take	any
value	between	plus	infinity	and	minus	infinity	and	map	it	into	a	small,
predefined	range.	The	output	range	of	the	logistic	function	is	0	to	1,	and	the	tanh
function	is	−1	to	1.	As	a	consequence,	the	outputs	of	a	neuron	that	uses	a	logistic
function	as	its	activation	function	are	always	between	0	and	1.	The	fact	that	both
the	logistic	and	tanh	functions	apply	nonlinear	mappings	is	clear	in	the	S	shape
of	the	curves.	The	reason	for	introducing	a	nonlinear	mapping	into	a	neuron	is
that	one	of	the	limitations	of	a	multi-input	linear-regression	function	is	that	the
function	is	by	definition	linear,	and	if	all	the	neurons	within	a	network
implement	only	linear	mappings,	then	the	overall	network	is	also	limited	to
learning	a	linear	functions.	However,	introducing	a	nonlinear	activation	function
in	the	neurons	of	a	network	allows	the	network	to	learn	more	complex
(nonlinear)	functions.

Figure	12	Mapping	the	logistic	and	tanh	functions	as	applied	to	the	input	x.



It	is	worth	emphasizing	that	each	neuron	in	a	neural	network	is	doing	a	very
simple	set	of	operations:

1.	 Multiplying	each	input	by	a	weight.

2.	 Adding	together	the	results	of	the	multiplications.

3.	 Pushing	this	result	through	an	activation	function.

Operations	1	and	2	are	just	the	calculation	of	a	multi-input	regression	function
over	the	inputs,	and	operation	3	is	the	application	of	the	activation	function.
All	the	connections	between	the	neurons	in	a	neural	network	are	directed	and

have	a	weight	associated	with	them.	The	weight	on	a	connection	coming	into	a
neuron	is	the	weight	that	the	neuron	applies	to	the	input	it	receives	on	that
connection	when	it	is	calculating	the	multi-input	regression	function	over	its
inputs.	Figure	13	illustrates	the	topological	structure	of	a	simple	neural	network.
The	squares	on	the	left	side	of	the	figure,	labeled	A	and	B,	represent	locations	in
memory	that	we	use	to	present	input	data	to	the	network.	No	processing	or
transformation	of	data	is	carried	out	at	these	locations.	You	can	think	of	these
nodes	as	input	or	sensing	neurons,	whose	output	activation	is	set	to	the	value	of
the	input.5	The	circles	in	figure	13	(labeled	C,	D,	E,	and	F)	represent	the	neurons
in	the	network.	It	is	often	useful	to	think	of	the	neurons	in	a	network	as
organized	into	layers.	This	network	has	three	layers	of	neurons:	the	input	layer
contains	A	and	B;	one	hidden	layer	contains	C,	D,	and	E;	and	the	output	layer
contains	F.	The	term	hidden	layer	describes	the	fact	that	the	neurons	in	a	layer
are	in	neither	the	input	layer	nor	the	output	layer,	so	in	this	sense	they	are	hidden
from	view.

Figure	13	A	simple	neural	network.



The	arrows	connecting	the	neurons	in	the	network	represent	the	flow	of
information	through	the	network.	Technically,	this	particular	network	is	a	feed-
forward	neural	network	because	there	are	no	loops	in	the	network:	all	the
connections	point	forward	from	the	input	toward	the	output.	Also,	this	network
is	considered	fully	connected	because	each	neuron	is	connected	to	all	the
neurons	in	the	next	layer	in	the	network.	It	is	possible	to	create	many	different
types	of	neural	networks	by	changing	the	number	of	layers,	the	number	of
neurons	in	each	layer,	the	type	of	activation	functions	used,	the	direction	of	the
connections	between	layers,	and	other	parameters.	In	fact,	much	of	the	work
involved	in	developing	a	neural	network	for	a	particular	task	involves
experimenting	to	find	the	best	network	layout	for	that	task.
The	labels	on	each	arrow	represent	the	weight	that	the	node	at	the	end	of	the

arrow	applies	to	the	information	passed	along	that	connection.	For	example,	the
arrow	connecting	C	with	F	indicates	that	the	output	from	C	is	passed	as	an	input
to	F,	and	F	will	apply	the	weight	WC,F	to	the	input	from	C.
If	we	assume	that	the	neurons	in	the	network	in	figure	13	use	a	tanh	activation

function,	then	we	can	define	the	calculation	carried	out	in	neuron	F	of	the
network	as

The	mathematical	definition	of	the	processing	carried	out	in	neuron	F	shows
that	the	final	output	of	the	network	is	calculated	using	a	composition	of	a	set	of
functions.	The	phrase	“composing	functions”	just	means	that	the	output	of	one
function	is	used	as	input	to	another	function.	In	this	case,	the	outputs	of	neurons
C,	D,	and	E	are	used	as	inputs	to	neuron	F,	so	the	function	implemented	by	F
composes	the	functions	implemented	by	C,	D,	and	E.
Figure	14	makes	this	description	of	neural	networks	more	concrete,	illustrating

a	neural	network	that	takes	a	person’s	body-fat	percentage	and	VO2	max	(a
measure	of	the	maximum	amount	of	oxygen	that	a	person	can	use	in	a	minute)	as
input	and	calculates	a	fitness	level	for	the	that	person.6	Each	neuron	in	the
middle	layer	of	the	network	calculates	a	function	based	on	the	body-fat
percentage	and	VO2	max:	f1(),	f2(),	and	f3().	Each	of	these	functions	models	the
interaction	between	the	inputs	in	a	different	way.	These	functions	essentially
represent	new	attributes	that	are	derived	from	the	raw	inputs	to	the	network.
They	are	similar	to	the	BMI	attribute	described	earlier,	which	was	calculated	as	a
function	of	weight	and	height.	Sometimes	it	is	possible	to	interpret	what	the
output	of	a	neuron	in	the	network	represents	insofar	as	it	is	possible	to	provide	a
domain-theoretic	description	of	what	the	derived	attribute	represents	and	to



understand	why	this	derived	attribute	is	useful	to	the	network.	Often,	however,
the	derived	attribute	calculated	by	a	neuron	will	not	have	a	symbolic	meaning
for	humans.	These	attributes	are	instead	capturing	interactions	between	the	other
attributes	that	the	network	has	found	to	be	useful.	The	final	node	in	the	network,
f4,	calculates	another	function—over	the	outputs	of	f1(),	f2(),	and	f3()—the	output
of	which	is	the	fitness	prediction	returned	by	the	network.	Again,	this	function
may	not	be	meaningful	to	humans	beyond	the	fact	that	it	defines	an	interaction
the	network	has	found	to	have	a	high	correlation	with	the	target	attribute.

Figure	14	A	neural	network	that	predicts	a	person’s	fitness	level.

Training	a	neural	network	involves	finding	the	correct	weights	for	the
connections	in	the	network.	To	understand	how	to	train	a	network,	it	is	useful	to
begin	by	thinking	about	how	to	train	the	weights	for	a	single	neuron	in	the
output	layer	of	the	network.	Assume	that	we	have	a	training	data	set	that	has
both	inputs	and	target	output	for	each	instance.	Also,	assume	that	the
connections	coming	into	the	neuron	already	have	weights	assigned	to	them.	If
we	take	an	instance	from	the	data	set	and	present	the	values	of	the	input
attributes	for	this	instance	to	the	network,	the	neuron	will	output	a	prediction	for
the	target.	By	subtracting	this	prediction	from	the	value	for	the	target	in	the	data
set,	we	can	measure	the	neuron’s	error	on	that	instance.	Using	some	basic
calculus,	it	is	possible	to	derive	a	rule	to	update	the	weights	on	the	connections
coming	into	a	neuron	given	a	measure	of	the	neuron’s	output	error	so	as	to
reduce	the	neuron’s	error.	The	precise	definition	of	this	rule	will	vary	depending
on	the	activation	function	used	by	the	neuron	because	the	activation	function
affects	the	derivative	used	in	the	derivation	of	the	rule.	But	we	can	give	the
following	intuitive	explanation	of	how	the	weight-update	rule	works:



1.	 If	the	error	is	0,	then	we	should	not	change	the	weights	on	the	inputs.

2.	 If	the	error	is	positive,	we	will	decrease	the	error	if	we	increase	the	neuron’s
output,	so	we	must	increase	the	weights	for	all	the	connections	where	the
input	is	positive	and	decrease	the	weights	for	the	connections	where	the	input
is	negative.

3.	 If	the	error	is	negative,	we	will	decrease	the	error	if	we	decrease	the	neuron’s
output,	so	we	must	decrease	the	weights	for	all	the	connections	where	the
input	is	positive	and	increase	the	weights	for	the	connections	where	the	input
is	negative.

The	difficulty	in	training	a	neural	network	is	that	the	weight-update	rule
requires	an	estimate	of	the	error	at	a	neuron,	and	although	it	is	straightforward	to
calculate	the	error	for	each	neuron	in	the	output	layer	of	the	network,	it	is
difficult	to	calculate	the	error	for	the	neurons	in	the	earlier	layers.	The	standard
way	to	train	a	neural	network	is	to	use	an	algorithm	called	the	backpropagation
algorithm	to	calculate	the	error	for	each	neuron	in	the	network	and	then	use	the
weight-update	rule	to	modify	the	weights	in	the	network.7	The	backpropagation
algorithm	is	a	supervised	ML	algorithm,	so	it	assumes	a	training	data	set	that	has
both	inputs	and	the	target	output	for	each	instance.	The	training	starts	by
assigning	random	weights	to	each	of	the	connections	in	the	network.	The
algorithm	then	iteratively	updates	the	weights	in	the	network	by	showing
training	instances	from	the	data	set	to	the	network	and	updating	the	network
weights	until	the	network	is	working	as	expected.	The	algorithm’s	name	comes
from	the	fact	that	after	each	training	instance	is	presented	to	the	network,	the
algorithm	passes	(or	backpropagates)	the	error	of	the	network	back	through	the
network	starting	at	the	output	layer	and	at	each	layer	in	the	network	calculates
the	error	for	the	neurons	in	that	layer	before	sharing	this	error	back	to	the
neurons	in	the	preceding	layer.	The	main	steps	in	the	algorithm	are	as	follows:

1.	 Calculate	the	error	for	the	neurons	in	the	output	layer	and	use	the	weight-
update	rule	to	update	the	weights	coming	into	these	neurons.

2.	 Share	the	error	calculated	at	a	neuron	with	each	of	the	neurons	in	the
preceding	layer	that	is	connected	to	that	neuron	in	proportion	to	the	weight
of	the	connection	between	the	two	neurons.

3.	 For	each	neuron	in	the	preceding	layer,	calculate	the	overall	error	of	the
network	that	the	neuron	is	responsible	for	by	summing	the	errors	that	have
been	backpropagated	to	it	and	use	the	result	of	this	error	summation	to
update	the	weights	on	the	connections	coming	into	this	neuron.



4.	 Work	back	through	the	rest	of	the	layers	in	the	network	by	repeating	steps	2
and	3	until	the	weights	between	the	input	neurons	and	the	first	layer	of
hidden	neurons	have	been	updated.

In	backpropagation,	the	weight	updates	for	each	neurons	are	scaled	to	reduce
but	not	to	eliminate	the	neuron’s	error	in	the	training	instance.	The	reason	for
this	is	that	the	goal	of	training	the	network	is	to	enable	it	to	generalize	to	new
instances	that	are	not	in	the	training	data	rather	than	to	memorize	the	training
data.	So	each	set	of	weight	updates	nudges	the	network	toward	a	set	of	weights
that	are	generally	better	over	the	whole	data	set,	and	over	many	iterations	the
network	converges	on	a	set	of	weights	that	captures	the	general	distribution	of
the	data	rather	than	the	specifics	of	the	training	instances.	In	some	versions	of
backpropagation,	the	weights	are	updated	after	a	number	of	instances	(or	batch
of	instances)	have	been	presented	to	the	network	rather	than	after	each	training
instance.	The	only	adjustment	required	in	these	versions	is	that	the	algorithm
uses	the	average	error	of	the	network	on	a	batch	as	the	measure	of	error	at	the
output	layer	for	the	weight-update	process.
One	of	the	most	exciting	technical	developments	in	the	past	10	years	has	been

the	emergence	of	deep	learning.	Deep-learning	networks	are	simply	neural
networks	that	have	multiple8	layers	of	hidden	units;	in	other	words,	they	are
deep	in	terms	of	the	number	of	hidden	layers	they	have.	The	neural	network	in
figure	15	has	five	layers:	one	input	layer	on	the	left	containing	three	neurons,
three	hidden	layers	(the	black	circles),	and	one	output	layer	on	the	right
containing	two	neurons.	This	network	illustrates	that	it	is	possible	to	have	a
different	number	of	neurons	in	each	layer:	the	input	layer	has	three	neurons;	the
first	hidden	layer	has	five;	each	of	the	next	two	hidden	layers	has	four;	and	the
output	layer	has	two.	This	network	also	shows	that	it	is	possible	to	have	multiple
neurons	in	the	output	layer.	Using	multiple	output	neurons	is	useful	if	the	target
is	a	nominal	or	ordinal	data	type	that	has	distinct	levels.	In	these	scenarios,	the
network	is	set	up	so	that	there	is	one	output	neuron	for	each	level,	and	the
network	is	trained	so	that	for	each	input	only	one	of	the	output	neurons	outputs	a
high	activation	(denoting	the	predicted	target	level).



Figure	15	A	deep	neural	network.

As	in	the	previous	networks	we	have	looked	at,	the	one	shown	in	figure	15	is	a
fully	connected,	feed-forward	network.	However,	not	all	networks	are	fully
connected,	feed-forward	networks.	In	fact,	myriad	network	topologies	have	been
developed.	For	example,	recurrent	neural	networks	(RNNs)	introduce	loops	in
the	network	topology:	the	output	of	a	neuron	for	one	input	is	fed	back	into	the
neuron	during	the	processing	of	the	next	input.	This	loop	gives	the	network	a
memory	that	enables	it	to	process	each	input	in	the	context	of	the	previous	inputs
it	has	processed.	As	a	consequence,	RNNs	are	suitable	for	processing	sequential
data	such	as	language.9	Another	well-known	deep	neural	network	architecture	is
a	convolutional	neural	network	(CNN).	CNNs	were	originally	designed	for	use
with	image	data	(Le	Cun	1989).	A	desirable	characteristic	of	an	image-
recognition	network	is	that	it	should	be	able	to	recognize	if	a	visual	feature	has
occurred	in	an	image	irrespective	of	where	in	the	image	it	has	occurred.	For
example,	if	a	network	is	doing	face	recognition,	it	needs	to	be	able	to	recognize
the	shape	of	an	eye	whether	the	eye	is	in	the	top-right	corner	of	the	image	or	in
the	center	of	the	image.	CNNs	achieve	this	by	having	groups	of	neurons	that
share	the	same	set	of	weights	on	their	inputs.	In	this	context,	think	of	a	set	of
input	weights	as	defining	a	function	that	returns	true	if	a	particular	visual	feature
occurs	in	the	set	of	pixels	that	are	passed	into	the	function.	This	means	that	each
group	of	neurons	that	share	their	weights	learns	to	identify	a	particular	visual
feature,	and	each	neuron	in	the	group	acts	as	a	detector	for	that	feature.	In	a
CNN,	the	neurons	within	each	group	are	arranged	so	that	each	neuron	examines
a	different	location	in	the	image,	and	the	group	covers	the	entire	image.	As	a
consequence,	if	the	visual	feature	the	group	detects	occurs	anywhere	in	the
image,	one	of	the	neurons	in	the	group	will	identify	it.



The	power	of	deep	neural	networks	comes	from	the	fact	that	they	can
automatically	learn	useful	attributes,	such	as	the	feature	detectors	in	CNNs.	In
fact,	deep	learning	is	sometimes	known	as	representation	learning	because	these
deep	networks	are	essentially	learning	a	new	representation	of	the	input	data	that
is	better	at	predicting	the	target	output	attribute	than	the	original	raw	input	is.
Each	neuron	in	a	network	defines	a	function	that	maps	the	values	coming	into
the	neuron	into	a	new	output	attribute.	So	a	neuron	in	the	first	layer	of	a	network
might	learn	a	function	that	maps	the	raw	input	values	(such	as	weight	and
height)	into	an	attribute	that	is	more	useful	than	individual	input	values	(such	as
BMI).	However,	the	output	of	this	neuron,	along	with	the	outputs	of	its	sister
neurons	in	the	first	layer,	is	then	fed	into	the	neurons	in	the	second	layer,	and
these	second-layer	neurons	try	to	learn	functions	that	map	the	outputs	of	the	first
layer	into	new	and	yet	more	useful	representations.	This	process	of	mapping
inputs	to	new	attributes	and	feeding	these	new	attributes	as	inputs	to	new
functions	continues	throughout	the	network,	and	as	a	network	gets	deeper,	it	can
learn	more	and	more	complex	mappings	from	raw	inputs	to	new	attribute
representations.	It	is	the	ability	to	automatically	learn	complex	mappings	of
input	data	to	useful	attribute	representations	that	has	made	deep-learning	models
so	accurate	in	tasks	with	high-dimensional	inputs	(such	as	image	and	text
processing).
It	has	been	known	for	a	long	time	that	making	neural	networks	deeper	allows

the	network	to	learn	more	complex	mappings	of	data.	The	reason	that	deep
learning	has	not	really	taken	off	until	the	past	few	years,	however,	is	that	the
standard	combination	of	using	a	random-weight	initialization	followed	by	the
backpropagation	algorithm	doesn’t	work	well	with	deep	networks.	One	problem
with	the	backpropagation	algorithm	is	that	the	error	gets	shared	out	as	the
process	goes	back	through	the	layers,	so	that	in	a	deep	network	by	the	time	the
algorithm	reaches	the	early	layers	of	the	network,	the	error	estimates	are	not	that
useful	anymore.10	As	a	result,	the	layers	in	the	early	parts	of	the	network	don’t
learn	useful	transformations	for	the	data.	In	the	past	few	years,	however,
researchers	have	developed	new	types	of	neurons	and	adaptations	to	the
backpropagation	algorithm	that	deal	with	this	problem.	It	has	also	been	found
that	being	careful	with	how	the	network	weights	are	initialized	is	also	helpful.
Two	other	factors	that	formerly	made	training	deep	networks	difficult	were	that
it	takes	a	great	deal	of	computing	power	to	train	a	neural	network,	and	neural
networks	work	best	when	there	is	a	great	deal	of	training	data.	However,	as	we
have	already	discussed,	in	recent	years	significant	increases	in	the	availability	of
computing	power	and	large	data	sets	have	made	the	training	of	deep	networks
more	feasible.



Decision	Trees
Linear	regression	and	neural	networks	work	best	with	numeric	inputs.	If	the
input	attributes	in	a	data	set	are	primarily	nominal	or	ordinal,	however,	then
other	ML	algorithms	and	models,	such	as	decision	trees,	may	be	more
appropriate.
A	decision	tree	encodes	a	set	of	if	then,	else	rules	in	a	tree	structure.	Figure	16

illustrates	a	decision	tree	for	deciding	whether	an	email	is	spam	or	not.
Rectangles	with	rounded	corners	represent	tests	on	attributes,	and	the	square
nodes	indicate	decision,	or	classification,	nodes.	This	tree	encodes	the	following
rules:	if	the	email	is	from	an	unknown	sender,	then	it	is	spam;	if	it	isn’t	from	an
unknown	sender	but	contains	suspicious	words,	then	it	is	spam;	if	it	is	neither
from	an	unknown	sender	nor	contains	suspicious	words,	then	it	is	not	spam.	In	a
decision	tree,	the	decision	for	an	instance	is	made	by	starting	at	the	top	of	the
tree	and	navigating	down	through	the	tree	by	applying	a	sequence	of	attribute
tests	to	the	instance.	Each	node	in	the	tree	specifies	one	attribute	to	test,	and	the
process	descends	the	tree	node	by	node	by	choosing	the	branch	from	the	current
node	with	the	label	matching	the	value	of	the	test	attribute	of	the	instance.	The
final	decision	is	the	label	of	the	terminating	(or	leaf)	node	that	the	instance
descends	to.

Figure	16	A	decision	tree	for	determining	whether	an	email	is	spam	or	not.

Each	path	in	a	decision	tree,	from	root	to	leaf,	defines	a	classification	rule
composed	of	a	sequence	of	tests.	The	goal	of	a	decision-tree-learning	algorithm
is	to	find	a	set	of	classification	rules	that	divide	the	training	data	set	into	sets	of
instances	that	have	the	same	value	for	the	target	attribute.	The	idea	is	that	if	a
classification	rule	can	separate	out	from	a	data	set	a	subset	of	instances	that	have
the	same	target	value,	and	if	this	classification	rule	is	true	for	a	new	example
(i.e.,	the	example	goes	down	that	path	in	the	tree),	then	it	is	likely	that	the	correct
prediction	for	this	new	example	is	the	target	value	shared	by	all	the	training



instances	that	fit	this	rule.
The	progenitor	of	most	modern	ML	algorithms	for	decision-tree	learning	is	the

ID3	algorithm	(Quinlan	1986).	ID3	builds	a	decision	tree	in	a	recursive,	depth-
first	manner,	adding	one	node	at	a	time,	starting	with	the	root	node.	It	begins	by
selecting	an	attribute	to	test	at	the	root	node.	A	branch	is	grown	from	the	root	for
each	value	in	the	domain	of	this	test	attribute	and	is	labeled	with	that	value.	For
example,	a	node	with	a	binary	test	attribute	will	have	two	branches	descending
from	it.	The	data	set	is	then	divided	up:	each	instance	in	the	data	set	is	pushed
down	the	branch	and	given	a	label	that	matches	the	value	of	the	test	attribute	for
the	instance.	ID3	then	grows	each	branch	using	the	same	process	used	to	create
the	root	node:	select	a	test	attribute,	add	a	node	with	branches,	split	the	data	by
funneling	the	instances	down	the	relevant	branches.	This	process	continues	until
all	the	instances	on	a	branch	have	the	same	value	for	the	target	attribute,	in
which	case	a	terminating	node	is	added	to	the	tree	and	labeled	with	the	target
attribute	value	shared	by	all	the	instances	on	the	branch.11
ID3	chooses	the	attribute	to	test	at	each	node	in	the	tree	so	as	to	minimize	the

number	of	tests	required	to	create	pure	sets	(i.e.,	sets	of	instances	that	have	the
same	value	for	the	target	attribute).	One	way	to	measure	the	purity	of	a	set	is	to
use	Claude	Shannon’s	entropy	metric.	The	minimum	possible	entropy	for	a	set	is
zero,	and	a	pure	set	has	an	entropy	of	zero.	The	numeric	value	of	the	maximum
possible	entropy	for	a	set	depends	on	the	size	of	the	set	and	the	number	of
different	types	of	elements	that	can	be	in	the	set.	A	set	will	have	maximum
entropy	when	all	the	elements	in	it	are	of	different	types.12	ID3	selects	the
attribute	to	test	at	a	node	to	be	the	attribute	that	results	in	the	lowest-weighted
entropy	after	splitting	the	data	set	at	the	node	using	this	attribute.	The	weighted
entropy	for	an	attribute	is	calculated	by	(1)	splitting	the	data	set	using	the
attribute;	(2)	calculating	the	entropy	of	the	resulting	sets;	(3)	weighting	each	of
these	entropies	by	the	fraction	of	data	that	is	in	the	set;	and	(4)	then	summing	the
results.
Table	3	lists	a	data	set	of	emails	in	which	each	email	is	described	by	a	number

of	attributes	and	whether	it	is	a	spam	email	or	not.	The	“attachment”	attribute	is
true	for	emails	that	have	an	attachment	and	false	otherwise	(in	this	sample	of
emails,	none	of	the	emails	has	an	attachment).	The	“suspicious	words”	attribute
is	true	if	the	email	contains	one	or	more	words	on	a	predefined	list	of	suspicious
words.	The	“unknown	sender”	attribute	is	true	if	the	sender	of	the	email	is	not	in
the	recipient’s	address	book.	This	is	the	data	set	that	was	used	to	train	the
decision	tree	shown	in	figure	16.	In	this	data	set,	the	attributes	“attachment,”
“suspicious	words,”	and	“unknown	sender”	are	the	input	attributes	and	the



“spam”	attribute	is	the	target.	The	“unknown	sender”	attribute	splits	the	data	set
into	purer	sets	more	than	any	of	the	other	attributes	does	(one	set	containing
instances	where	“Spam	=	True”	and	another	set	in	which	“Spam	=	False”	for	the
majority	of	instances).	As	a	consequence,	“unknown	sender”	is	put	at	the	root
node	(see	figure	17).	After	this	initial	split,	all	of	the	instances	on	the	right
branch	have	the	same	target	value.	However,	the	instances	on	the	left	branch
have	different	values	for	the	target.	Splitting	the	instances	on	the	left	branch
using	the	“suspicious	words”	attribute	results	in	two	pure	sets:	one	where	“Spam
=	False”	and	another	where	“Spam	=	True.”	So	“suspicious	words”	is	selected	as
the	test	attribute	for	a	new	node	on	the	left	branch	(see	figure	18).	At	this	point,
the	data	subsets	at	the	end	of	each	branch	are	pure,	so	the	algorithm	finishes	and
returns	the	decision	tree	shown	in	figure	16.

Table	3	A	Data	Set	of	Emails:	Spam	or	Not	Spam?

Figure	17	Creating	the	root	node	in	the	tree.



Figure	18	Adding	the	second	node	to	the	tree.

One	of	the	strengths	of	decision	trees	is	that	they	are	simple	to	understand.
Also	it	is	possible	to	create	very	accurate	models	based	on	decision	trees.	For
example,	a	random-forest	model	is	composed	of	a	set	of	decision	trees,	where
each	tree	is	trained	on	a	random	subsample	of	the	training	data,	and	the
prediction	returned	by	the	model	for	an	individual	query	is	the	majority
prediction	across	all	the	trees	in	the	forest.	Although	decision	trees	work	well
with	both	nominal	and	ordinal	data,	they	struggle	with	numeric	data.	In	a
decision	tree,	a	separate	branch	descends	from	each	node	for	each	value	in	the
domain	of	the	attribute	tested	at	the	node.	Numeric	attributes,	however,	have	an
infinite	number	of	values	in	their	domains,	with	the	implication	that	a	tree	would
need	an	infinite	number	of	branches.	One	solution	to	this	problem	is	to	transform
numeric	attributes	into	ordinal	attributes,	although	doing	so	requires	the
definition	of	appropriate	thresholds,	which	can	also	be	difficult.
Finally,	because	a	decision-tree-learning	algorithm	repeatedly	divides	a	data

set	as	a	tree	becomes	large,	it	becomes	more	sensitive	to	noise	(such	as
mislabeled	instances).	The	subset	of	examples	on	each	branch	becomes	smaller,
and	so	the	data	sample	each	classification	rule	is	based	on	becomes	smaller.	The
smaller	the	data	sample	used	to	define	a	classification	rule,	the	more	sensitive	to
noise	the	rule	becomes.	As	a	consequence,	it	is	a	good	idea	to	keep	decision
trees	shallow.	One	approach	is	to	stop	the	growth	of	a	branch	when	the	number
of	instances	on	the	branch	is	still	less	than	a	predefined	threshold	(e.g.,	20
instances).	Other	approaches	allow	the	tree	to	grow	and	then	prune	the	tree	back.
These	approaches	typically	use	statistical	tests	or	the	performance	of	the	model
on	a	set	of	instances	specifically	chosen	for	this	task	to	identify	splits	near	the



bottom	of	the	tree	that	should	be	removed.

Bias	in	Data	Science

The	goal	of	ML	is	to	create	models	that	encode	appropriate	generalizations	from
data	sets.	Two	major	factors	contribute	to	the	generalization	(or	model)	that	an
ML	algorithm	will	generate	from	a	data	set.	The	first	is	the	data	set	the	algorithm
is	run	on.	If	the	data	set	is	not	representative	of	the	population,	then	the	model
the	algorithm	generates	won’t	be	accurate.	For	example,	earlier	we	developed	a
regression	model	that	predicted	the	likelihood	that	an	individual	will	develop
Type	2	diabetes	based	on	his	BMI.	This	model	was	generated	from	a	data	set	of
American	white	males.	As	a	consequence,	this	model	is	unlikely	to	be	accurate	if
used	to	predict	the	likelihood	of	diabetes	for	females	or	for	males	of	different
race	or	ethnic	backgrounds.	The	term	sample	bias	describes	how	the	process
used	to	select	a	data	set	can	introduce	biases	into	later	analysis,	be	it	a	statistical
analysis	or	the	generation	of	predictive	models	using	ML.
The	second	factor	that	affects	the	model	generated	from	a	data	set	is	the	choice

of	ML	algorithm.	There	are	many	different	ML	algorithms,	and	each	one
encodes	a	different	way	to	generalize	from	a	data	set.	The	type	of	generalization
an	algorithm	encodes	is	known	as	the	learning	bias	(or	sometimes	the	modeling
or	selection	bias)	of	the	algorithm.	For	example,	a	linear-regression	algorithm
encodes	a	linear	generalization	from	the	data	and	as	a	result	ignores	nonlinear
relationships	that	may	fit	the	data	more	closely.	Bias	is	normally	understood	as	a
bad	thing.	For	example,	the	sampling	bias	is	a	bias	that	a	data	scientist	will	try	to
avoid.	However,	without	a	learning	bias	there	can	be	no	learning,	and	the
algorithm	will	only	be	able	to	memorize	the	data.
However,	because	ML	algorithms	are	biased	to	look	for	different	types	of

patterns,	and	because	there	is	no	one	learning	bias	across	all	situations,	there	is
no	one	best	ML	algorithm.	In	fact,	a	theorem	known	as	the	“no	free	lunch
theorem”	(Wolpert	and	Macready	1997)	states	that	there	is	no	one	best	ML
algorithm	that	on	average	outperforms	all	other	algorithms	across	all	possible
data	sets.	So	the	modeling	phase	of	the	CRISP-DM	process	normally	involves
building	multiple	models	using	different	algorithms	and	comparing	the	models
to	identify	which	algorithm	generates	the	best	model.	In	effect,	these
experiments	are	testing	which	learning	bias	on	average	produces	the	best	models
for	the	given	data	set	and	task.



Evaluating	Models:	Generalization	Not	Memorization

Once	a	data	scientist	has	selected	a	set	of	ML	algorithms	to	experiment	with	on	a
data	set,	the	next	major	task	is	to	create	a	test	plan	for	how	the	models	generated
by	these	algorithms	will	be	evaluated.	The	goal	of	the	test	plan	is	to	ensure	that
the	evaluation	provides	realistic	estimates	of	model	performance	on	unseen	data.
A	prediction	model	that	simply	memorizes	a	data	set	is	unlikely	to	do	a	good	job
at	estimating	values	for	new	examples.	One	problem	with	just	memorizing	data
is	that	most	data	sets	will	contain	noise.	So	a	prediction	model	that	merely
memorizes	data	is	also	memorizing	the	noise	in	the	data.	Another	problem	with
just	memorizing	the	data	is	that	it	reduces	the	prediction	process	to	a	table
lookup	and	leaves	unsolved	the	problem	of	how	to	generalize	from	the	training
data	to	new	examples	that	aren’t	in	the	table.
One	part	of	the	test	plan	relates	to	how	the	data	set	is	used	to	train	and	test	the

models.	The	data	set	has	to	be	used	for	two	different	purposes.	The	first	is	to	find
which	algorithm	generates	the	best	models.	The	second	is	to	estimate	the
generalization	performance	of	the	best	model—that	is,	how	well	the	model	is
likely	to	do	on	unseen	data.	The	golden	rule	for	evaluating	models	is	that	models
should	never	be	tested	on	the	same	data	they	were	trained	on.	Using	the	same
data	for	training	and	testing	models	is	equivalent	to	giving	a	class	of	students	the
questions	on	an	exam	the	night	before	the	test	is	held.	The	students	will	of
course	do	very	well	in	the	test,	and	their	scores	will	not	reflect	their	real
proficiency	with	the	general	course	material.	So,	too,	with	ML	models:	if	a
model	is	evaluated	on	the	same	data	that	it	is	trained	on,	the	results	of	the
evaluation	will	be	optimistic	compared	to	the	model’s	real	performance.	The
standard	process	for	ensuring	that	the	models	aren’t	able	to	peek	at	the	test	data
during	training	is	to	split	the	data	into	three	parts:	a	training	set,	a	validation	set,
and	a	test	set.	The	proportions	of	the	split	will	vary	between	projects,	but	splits
of	50:20:30	and	40:20:40	are	common.	The	size	of	the	data	set	is	a	key	factor	in
determining	the	splits:	generally,	the	larger	the	data	set,	the	larger	the	test	set.
The	training	set	is	used	to	train	an	initial	set	of	models.	The	validation	set	is	then
used	to	compare	the	performance	of	these	models	on	unseen	data.	Comparing
the	performance	of	these	initial	models	on	the	validation	set	enables	us	to
determine	which	algorithm	generated	the	best	model.	Once	the	best	algorithm
has	been	selected,	the	training	and	validation	set	can	be	merged	back	together
into	a	larger	training	set,	and	this	data	set	is	fed	into	the	best	algorithm	to	create
the	final	model.	It	is	crucial	that	the	test	set	is	not	used	during	the	process	to
select	the	best	algorithm,	nor	should	it	be	used	to	train	this	final	model.	If	these



caveats	are	followed,	then	the	test	set	can	be	used	to	estimate	the	generalization
performance	of	this	final	model	on	unseen	data.
The	other	major	component	of	the	test	plan	is	to	choose	the	appropriate

evaluation	metrics	to	use	during	the	testing.	In	general,	models	are	evaluated
based	on	how	often	the	outputs	of	the	model	match	the	outputs	listed	in	the	test
set.	If	the	target	attribute	is	a	numeric	value,	then	the	sum	of	squared	errors	is
one	way	to	measure	the	accuracy	of	a	model	on	the	test	set.	If	the	target	attribute
is	nominal	or	ordinal,	then	the	simplest	way	to	estimate	the	model	accuracy	is	to
calculate	the	proportion	of	examples	of	the	test	set	the	model	got	correct.
However,	in	some	contexts	it	is	important	to	include	an	error	analysis	within	the
evaluation.	For	example,	if	a	model	is	used	in	a	medical	diagnosis	setting,	it	is
much	more	serious	if	the	model	diagnoses	an	ill	patient	as	healthy	than	if	it
diagnoses	a	healthy	patient	as	ill.	Diagnosing	an	ill	patient	as	healthy	may	result
in	the	patient	being	sent	home	without	receiving	appropriate	medical	attention,
but	if	a	model	diagnoses	a	healthy	patient	as	ill,	this	error	is	likely	to	be
discovered	through	later	testing	the	patient	will	receive.	So	the	evaluation	metric
used	to	evaluate	these	types	of	models	should	weight	one	type	of	error	more	than
the	other	when	estimating	model	performance.	Once	the	test	plan	has	been
created,	the	data	scientist	can	begin	training	and	evaluating	models.

Summary

This	chapter	started	by	noting	that	data	science	is	a	partnership	between	a	data
scientist	and	a	computer.	Machine	learning	provides	a	set	of	algorithms	that
generate	models	from	a	large	data	set.	However,	whether	these	models	are	useful
will	depend	on	the	data	scientist’s	expertise.	For	a	data	science	project	to
succeed,	the	data	set	should	be	representative	of	the	domain	and	should	include
relevant	attributes.	The	data	scientist	should	evaluate	a	range	of	ML	algorithms
to	find	which	one	generates	the	best	models.	The	model-evaluation	process
should	follow	the	golden	rule	that	a	model	should	never	be	evaluated	on	the	data
it	was	trained	on.
Currently	in	most	data	science	projects,	the	primary	criterion	for	selecting

which	model	to	use	is	model	accuracy.	However,	in	the	near	future,	data	usage
and	privacy	regulations	may	affect	the	selection	of	ML	algorithms.	For	example,
the	General	Data	Protection	Regulations	will	come	into	force	in	the	European
Union	on	May	25,	2018.	We	discuss	these	regulations	in	relation	to	data	usage	in
chapter	6,	but	for	now	we	just	want	to	point	out	that	some	articles	in	the



regulations	may	appear	to	mandate	a	“right	to	explanation”	in	relation	to
automated	decision	processes.13	A	potential	implication	of	such	a	right	is	that
using	models,	such	a	neural	networks,	that	are	difficult	to	interpret	for	decisions
relating	to	individuals	may	become	problematic.	In	such	circumstances,	the
transparency	and	ease	of	explanation	of	some	models,	such	as	decision	trees,
may	make	the	use	of	these	models	more	appropriate.
Finally,	the	world	changes,	and	models	don’t.	Implicit	in	the	ML	process	of

data	set	construction,	model	training,	and	model	evaluation	is	the	assumption
that	the	future	will	be	the	same	as	the	past.	This	assumption	is	known	as	the
stationarity	assumption:	the	processes	or	behaviors	that	are	being	modeled	are
stationary	through	time	(i.e.,	they	don’t	change).	Data	sets	are	intrinsically
historic	in	the	sense	that	data	are	representations	of	observations	that	were	made
in	the	past.	So,	in	effect,	ML	algorithms	search	through	the	past	for	patterns	that
might	generalize	to	the	future.	Obviously,	this	assumption	doesn’t	always	hold.
Data	scientists	use	the	term	concept	drift	to	describe	how	a	process	or	behavior
can	change,	or	drift,	as	time	passes.	This	is	why	models	go	out	of	date	and	need
to	be	retrained	and	why	the	CRISP-DM	process	includes	the	outer	circle	shown
in	figure	4	to	emphasize	that	data	science	is	iterative.	Processes	need	to	put	in
place	postmodel	deployment	to	ensure	that	a	model	has	not	gone	stale,	and	when
it	has,	it	should	be	retrained.	The	majority	of	these	decisions	cannot	be
automated	and	require	human	insight	and	knowledge.	A	computer	will	answer
the	question	it	is	posed,	but	unless	care	is	taken,	it	is	very	easy	to	pose	the	wrong
question.

Notes

1. This	subheading,	Correlations	Are	Not	Causations,	but	Some	Are	Useful,	is
inspired	by	George	E.	P.	Box’s	(1979)	observation,	“Essentially,	all	models
are	wrong,	but	some	are	useful.”

2. For	a	numeric	target,	the	average	is	the	most	common	measure	of	central
tendency,	and	for	nominal	or	ordinal	data	the	mode	(or	most	frequently
occurring	value	is	the	most	common	measure	of	central	tendency).

3. We	are	using	a	more	complex	notation	here	involving	ω0	and	ω1	because	a
few	paragraphs	later	we	expand	this	function	to	include	more	than	one	input
attribute,	so	the	subscripted	variables	are	useful	notations	when	dealing	with



multiple	inputs.

4. A	note	of	caution:	the	numeric	values	reported	here	should	be	taken	as
illustrative	only	and	not	interpreted	as	definitive	estimates	of	the	relationship
between	BMI	and	likelihood	of	diabetes.

5. In	general,	neural	networks	work	best	when	the	inputs	have	similar	ranges.	If
there	are	large	differences	in	the	ranges	of	input	attributes,	the	attributes	with
the	much	larger	values	tend	to	dominate	the	processing	of	the	network.	To
avoid	this,	it	is	best	to	normalize	the	input	attributes	so	that	they	all	have
similar	ranges.

6. For	the	sake	of	simplicity,	we	have	not	included	the	weights	on	the
connections	in	figures	14	and	15.

7. Technically,	the	backpropagation	algorithm	uses	the	chain	rule	from	calculus
to	calculate	the	derivative	of	the	error	of	the	network	with	respect	to	each
weight	for	each	neuron	in	the	network,	but	for	this	discussion	we	will	pass
over	this	distinction	between	the	error	and	the	derivative	of	the	error	for	the
sake	of	clarity	in	explaining	the	essential	idea	behind	the	backpropagation
algorithm.

8. No	agreed	minimum	number	of	hidden	layers	is	required	for	a	network	to	be
considered	“deep,”	but	some	people	would	argue	that	even	two	layers	are
enough	to	be	deep.	Many	deep	networks	have	tens	of	layers,	but	some
networks	can	have	hundreds	or	even	thousands	of	layers.

9. For	an	accessible	introduction	to	RNNs	and	their	natural-language
processing,	see	Kelleher	2016.

10. Technically,	the	decrease	in	error	estimates	is	known	as	the	vanishing-
gradient	problem	because	the	gradient	over	the	error	surface	disappears	as	the
algorithm	works	back	through	the	network.

11. The	algorithm	also	terminates	on	two	corner	cases:	a	branch	ends	up	with	no
instances	after	the	data	set	is	split	up,	or	all	the	input	attributes	have	already
been	used	at	nodes	between	the	root	node	and	the	branch.	In	both	cases,	a
terminating	node	is	added	and	is	labeled	with	the	majority	value	of	the	target
attribute	at	the	parent	node	of	the	branch.

12. For	an	introduction	to	entropy	and	its	use	in	decision-tree	algorithms,	see
Kelleher,	Mac	Namee,	and	D’Arcy	2015	on	information-based	learning.

http://.


13. See	Burt	2017	for	an	introduction	to	the	debate	on	the	“right	to
explanation.”



5 Standard	Data	Science	Tasks

One	of	the	most	important	skills	for	a	data	scientist	is	the	ability	to	frame	a	real-
world	problem	as	a	standard	data	science	task.	Most	data	science	projects	can	be
classified	as	belonging	to	one	of	four	general	classes	of	task:

Clustering	(or	segmentation)

Anomaly	(or	outlier)	detection

Association-rule	mining

Prediction	(including	the	subproblems	of	classification	and	regression)

Understanding	which	task	a	project	is	targeting	can	help	with	many	project
decisions.	For	example,	training	a	prediction	model	requires	that	each	of	the
instances	in	the	data	set	include	the	value	of	the	target	attribute.	So	knowing	that
the	project	is	doing	prediction	gives	guidance	(through	requirements)	in	terms	of
data	set	design.	Understanding	the	task	also	informs	which	ML	algorithm(s)	to
use.	Although	there	are	a	large	number	of	ML	algorithms,	each	algorithm	is
designed	for	a	particular	data-mining	task.	For	example,	ML	algorithms	that
generate	decision-tree	models	are	designed	primarily	for	prediction	tasks.	There
is	a	many-to-one	relationship	between	ML	algorithms	and	a	task,	so	knowing	the
task	doesn’t	tell	you	exactly	which	algorithm	to	use,	but	it	does	define	a	set	of
algorithms	that	are	designed	for	the	task.	Because	the	data	science	task	affects
both	the	data	set	design	and	the	selection	of	ML	algorithms,	the	decision
regarding	which	task	the	project	will	target	has	to	be	made	early	on	in	the	project
life	cycle,	ideally	during	the	business-understanding	phase	of	the	CRISP-DM
life	cycle.	To	provide	a	better	understanding	of	each	of	these	tasks,	this	chapter
describes	how	some	standard	business	problems	map	to	tasks.

Who	Are	Our	Customers?	(Clustering)

One	of	the	most	frequent	application	areas	of	data	science	in	business	is	to



support	marketing	and	sales	campaigns.	Designing	a	targeted	marketing
campaign	requires	an	understanding	of	the	target	customer.	Most	businesses
have	a	diverse	range	of	customers	with	a	variety	of	needs,	so	using	a	one-size-
fits-all	approach	is	likely	to	fail	with	a	large	segment	of	a	customer	base.	A
better	approach	is	to	try	to	identify	a	number	of	customer	personas	or	customer
profiles,	each	of	which	relates	to	a	significant	segment	of	the	customer	base,	and
then	to	design	targeted	marketing	campaigns	for	each	persona.	These	personas
can	be	created	using	domain	expertise,	but	it	is	generally	a	good	idea	to	base	the
personas	on	the	data	that	the	business	has	about	its	customers.	Human	intuition
about	customers	can	often	miss	important	nonobvious	segments	or	not	provide
the	level	of	granularity	that	is	required	for	nuanced	marketing.	For	example,
Meta	S.	Brown	(2014)	reports	how	in	one	data	science	project	the	well-known
stereotype	soccer	mom	(a	suburban	homemaker	who	spends	a	great	deal	of	time
driving	her	children	to	soccer	or	other	sports	practice)	didn’t	resonate	with	a
customer	base.	However,	using	a	data-driven	clustering	process	identified	more
focused	personas,	such	as	mothers	working	full-time	outside	the	home	with
young	children	in	daycare	and	mothers	who	work	part-time	with	high-school-age
children	and	women	interested	in	food	and	health	and	who	do	not	have	children.
These	customer	personas	define	clearer	targets	for	marketing	campaigns	and
may	highlight	previously	unknown	segments	in	the	customer	base.
The	standard	data	science	approach	to	this	type	of	analysis	is	to	frame	the

problem	as	a	clustering	task.	Clustering	involves	sorting	the	instances	in	a	data
set	into	subgroups	containing	similar	instances.	Usually	clustering	requires	an
analyst	to	first	decide	on	the	number	of	subgroups	she	would	like	identified	in
the	data.	This	decision	may	be	based	on	domain	knowledge	or	informed	by
project	goals.	A	clustering	algorithm	is	then	run	on	the	data	with	the	desired
number	of	subgroups	input	as	one	of	the	algorithms	parameters.	The	algorithm
then	creates	that	number	of	subgroups	by	grouping	instances	based	on	the
similarity	of	their	attribute	values.	Once	the	algorithm	has	created	the	clusters,	a
human	domain	expert	reviews	the	clusters	to	interpret	whether	they	are
meaningful.	In	the	context	of	designing	a	marketing	campaign,	this	review
involves	checking	whether	the	groups	reflect	sensible	customer	personas	or
identifies	new	personas	not	previously	considered.
The	range	of	attributes	that	can	be	used	to	describe	customers	for	clustering	is

vast,	but	some	typical	examples	include	demographic	information	(age,	gender,
etc.),	location	(ZIP	code,	rural	or	urban	address,	etc.),	transactional	information
(e.g.,	what	products	or	services	they	have	purchased),	the	revenue	the	company
generates	from	them,	how	long	have	they	been	customers,	if	they	are	a	member
of	a	loyalty-card	scheme,	whether	they	ever	returned	a	product	or	made	a



complaint	about	a	service,	and	so	on.	As	is	true	of	all	data	science	projects,	one
of	the	biggest	challenges	with	clustering	is	to	decide	which	attributes	to	include
and	which	to	exclude	so	as	to	get	the	best	results.	Making	this	decision	on
attribute	selection	will	involve	iterations	of	experiments	and	human	analysis	of
the	results	of	each	iteration.
The	best-known	ML	algorithm	for	clustering	is	the	k-means	algorithm.	The	k

in	the	name	signals	that	the	algorithm	looks	for	k	clusters	in	the	data.	The	value
of	k	is	predefined	and	is	often	set	through	a	process	of	trial-and-error
experimentation	with	different	values	of	k.	The	k-means	algorithm	assumes	that
all	the	attributes	describing	the	customers	in	the	data	set	are	numeric.	If	the	data
set	contains	nonnumeric	attributes,	then	these	attributes	need	to	be	mapped	to
numeric	values	in	order	to	use	k-means,	or	the	algorithm	will	need	to	be
amended	to	handle	these	nonnumeric	values.	The	algorithm	treats	each	customer
as	a	point	in	a	point	cloud	(or	scatterplot),	where	the	customer’s	position	is
determined	by	the	attribute	values	in	her	profile.	The	goal	of	the	algorithm	is	to
find	the	position	of	each	cluster’s	center	in	the	point	cloud.	There	are	k	clusters,
so	there	are	k	cluster	centers	(or	means)—hence	the	name	of	the	algorithm.
The	k-means	algorithm	begins	by	selecting	k	instances	to	act	as	initial	cluster

centers.	Current	best	practice	is	to	use	an	algorithm	called	“k-means++”	to	select
the	initial	cluster	centers.	The	rationale	behind	k-means++	is	that	it	is	a	good
idea	to	spread	out	the	initial	cluster	centers	as	much	as	possible.	So	in	k-
means++	the	first	cluster	center	is	set	by	randomly	selecting	one	of	the	instances
in	the	data	set.	The	second	and	subsequent	cluster	centers	are	set	by	selecting	an
instance	from	the	data	set	with	the	probability	that	an	instance	selected	is
proportional	to	the	squared	distance	from	the	closest	existing	cluster	center.
Once	all	k	cluster	centers	have	been	initialized,	the	algorithm	works	by	iterating
through	a	two-step	process:	first,	assigning	each	instance	to	the	nearest	cluster
center,	and	then,	second,	updating	the	cluster	center	to	be	in	the	middle	of	the
instances	assigned	to	it.	In	the	first	iteration	the	instances	are	assigned	to	the
nearest	cluster	center	returned	by	the	k-means++	algorithm,	and	then	these
cluster	centers	are	moved	so	that	they	are	positioned	at	the	center	of	instances
assigned	to	them.	Moving	the	cluster	centers	is	likely	to	move	them	closer	to
some	instances	and	farther	away	from	other	instances	(including	farther	away
from	some	instances	assigned	to	the	cluster	center).	The	instances	are	then
reassigned,	again	to	the	closest	updated	cluster	center.	Some	instances	will
remain	assigned	to	the	same	cluster	center,	and	others	may	be	reassigned	to	a
new	cluster	center.	This	process	of	instance	assignment	and	center	updating
continues	until	no	instances	are	assigned	to	a	new	cluster	center	during	an
iteration.	The	k-means	algorithm	is	nondeterministic,	meaning	that	different



starting	positions	for	the	cluster	centers	will	likely	produce	different	clusters.	As
a	result,	the	algorithm	is	typically	run	several	times,	and	the	results	of	these
different	runs	are	then	compared	to	see	which	clusters	appear	most	sensible
given	the	data	scientist’s	domain	knowledge	and	understanding.
When	a	set	of	clusters	for	customer	personas	has	been	deemed	to	be	useful,	the

clusters	are	often	given	names	to	reflect	the	main	characteristics	of	the	cluster
persona.	Each	cluster	center	defines	a	different	customer	persona,	with	the
persona	description	generated	from	the	attribute	values	of	the	associated	cluster
center.	The	k-means	algorithm	is	not	required	to	return	equal-size	clusters,	and,
in	fact,	it	is	likely	to	return	different-size	clusters.	The	sizes	of	the	clusters	can	be
useful,	though,	because	they	can	help	to	guide	marketing.	For	example,	the
clustering	process	may	reveal	small,	focused	clusters	of	customers	that	current
marketing	campaigns	are	missing.	Or	an	alternative	strategy	might	be	to	focus
on	clusters	that	contain	customers	that	generate	a	great	deal	of	revenue.
Whatever	marketing	strategy	is	adopted,	understanding	the	segments	within	a
customer	base	is	the	prerequisite	to	marketing	success.
One	of	the	advantages	of	clustering	as	an	analytics	approach	is	that	it	can	be

applied	to	most	types	of	data.	Because	of	its	versatility,	clustering	is	often	used
as	a	data-exploration	tool	during	the	data-understanding	stage	of	many	data
science	projects.	Also,	clustering	is	also	useful	across	a	wide	range	of	domains.
For	example,	it	has	been	used	to	analyze	students	in	a	given	course	in	order	to
identify	groups	of	students	who	need	extra	support	or	prefer	different	learning
approaches.	It	has	also	been	used	to	identify	groups	of	similar	documents	in	a
corpus,	and	in	science	it	has	been	used	in	bio-informatics	to	analyze	gene
sequences	in	microarray	analysis.

Is	This	Fraud?	(Anomaly	Detection)

Anomaly	detection	or	outlier	analysis	involves	searching	for	and	identifying
instances	that	do	not	conform	to	the	typical	data	in	a	data	set.	These
nonconforming	cases	are	often	referred	to	as	anomalies	or	outliers.	Anomaly
detection	is	often	used	in	analyzing	financial	transactions	in	order	to	identify
potential	fraudulent	activities	and	to	trigger	investigations.	For	example,
anomaly	detection	might	uncover	fraudulent	credit	card	transactions	by
identifying	transactions	that	have	occurred	in	an	unusual	location	or	that	involve
an	unusually	large	amount	compared	to	other	transactions	on	a	particular	credit
card.



The	first	approach	that	most	companies	typically	use	for	anomaly	detection	is
to	manually	define	a	number	of	rules	based	on	domain	expertise	that	help	with
identifying	anomalous	events.	This	rule	set	is	often	defined	in	SQL	or	in	another
language	and	is	run	against	the	data	in	the	business	databases	or	data	warehouse.
Some	programming	languages	have	begun	to	include	specific	commands	to
facilitate	the	coding	of	these	types	of	rules.	For	example,	database
implementations	of	SQL	now	includes	a	MATCH_RECOGNIZE	function	to
facilitate	pattern	matching	in	data.	A	common	pattern	in	credit	card	fraud	is	that
when	a	credit	card	gets	stolen,	the	thief	first	checks	that	the	card	is	working	by
purchasing	a	small	item	on	the	card,	and	then	if	that	transaction	goes	through,
the	thief	as	quickly	as	possible	follows	that	purchase	with	the	purchase	of	an
expensive	item	before	the	card	is	canceled.	The	MATCH_RECOGNIZE	function
in	SQL	enables	database	programmers	to	write	scripts	that	identify	sequences	of
transactions	on	a	credit	card	that	fit	this	pattern	and	either	block	the	card
automatically	or	trigger	a	warning	to	the	credit-card	company.	Over	time,	as
more	anomalous	transactions	are	identified—for	example,	by	customers
reporting	fraudulent	transactions—the	set	of	rules	identifying	anomalous
transactions	is	expanded	to	handle	these	new	instances.
The	main	drawback	with	a	rule-based	approach	to	anomaly	detection	is	that

defining	rules	in	this	way	means	that	anomalous	events	can	be	identified	only
after	they	have	occurred	and	have	come	to	the	company’s	attention.	Ideally,	most
organizations	would	like	to	be	able	to	identify	anomalies	when	they	first	happen
or	if	they	have	happened	but	have	not	been	reported.	In	some	ways,	anomaly
detection	is	the	opposite	of	clustering:	the	goal	of	clustering	is	to	identify	groups
of	similar	instances,	whereas	the	goal	of	anomaly	detection	is	to	find	instances
that	are	dissimilar	to	the	rest	of	the	data	in	the	data	set.	By	this	intuition,
clustering	can	also	be	used	to	automatically	identify	anomalies.	There	are	two
approaches	to	using	clustering	for	anomaly	detection.	The	first	is	that	the	normal
data	will	be	clustered	together,	and	the	anomalous	records	will	be	in	separate
clusters.	The	clusters	containing	the	anomalous	records	will	be	small	and	so	will
be	clearly	distinct	from	the	large	clusters	for	the	main	body	of	the	records.	The
second	approach	is	to	measure	the	distance	between	each	instance	and	the	center
of	the	cluster.	The	farther	away	the	instance	is	from	the	center	of	the	cluster,	the
more	likely	it	is	to	be	anomalous	and	thus	to	need	investigation.
Another	approach	to	anomaly	detection	is	to	train	a	prediction	model,	such	as

a	decision	tree,	to	classify	instances	as	anomalous	or	not.	However,	training	such
a	model	normally	requires	a	training	data	set	that	contains	both	anomalous
records	and	normal	records.	Also,	it	is	not	enough	to	have	just	a	few	instances	of
anomalous	records;	in	order	to	train	a	normal	prediction	model,	the	data	set



needs	to	contain	a	reasonable	number	of	instances	from	each	class.	Ideally,	the
data	set	should	be	balanced;	in	a	binary-outcome	case,	balance	would	imply	a
50:50	split	in	the	data.	In	general,	acquiring	this	type	of	training	data	for
anomaly	detection	is	not	feasible:	by	definition,	anomalies	are	rare	events,
occurring	maybe	in	1	to	2	percent	or	less	of	the	data.	This	data	constraint
precludes	the	use	of	normal,	off-the-shelf	prediction	models.	There	are,	however,
ML	algorithms	known	as	one-class	classifiers	that	are	designed	to	deal	with	the
type	of	imbalanced	data	that	are	typical	of	anomaly-detection	data	sets.
The	one-class	support-vector	machine	(SVM)	algorithm	is	a	well-known	one-

class	classifier.	In	general	terms,	the	one-class	SVM	algorithm	examines	the	data
as	one	unit	(i.e.,	a	single	class)	and	identifies	the	core	characteristics	and
expected	behavior	of	the	instances.	The	algorithm	will	then	indicate	how	similar
or	dissimilar	each	instance	is	from	the	core	characteristics	and	expected
behavior.	This	information	can	then	be	used	to	identify	instances	that	warrant
further	investigation	(i.e.,	the	anomalous	records).	The	more	dissimilar	an
instance	is,	the	more	likely	that	it	should	be	investigated.
The	fact	that	anomalies	are	rare	means	that	they	can	be	easy	to	miss	and

difficult	to	identify.	As	a	result,	data	scientists	often	combine	a	number	of
different	models	to	detect	anomalies.	The	idea	is	that	different	models	will
capture	different	types	of	anomalies.	In	general,	these	models	are	used	to
supplement	the	known	rules	within	the	business	that	already	define	various	types
of	anomalous	activity.	The	different	models	are	integrated	together	into	a
decision-management	solution	that	enables	the	predictions	from	each	of	the
models	to	feed	into	a	decision	of	the	final	predicted	outcome.	For	example,	if	a
transaction	is	identified	as	fraudulent	by	only	one	out	of	four	models,	the
decision	system	may	decide	that	it	isn’t	a	true	case	of	fraud,	and	the	transaction
can	be	ignored.	Conversely,	however,	if	three	or	four	out	of	the	four	models	have
identified	the	transaction	as	possible	fraud,	then	the	transaction	would	be	flagged
for	a	data	scientist	to	investigate.
Anomaly	detection	can	be	applied	to	many	problem	domains	beyond	credit

card	fraud.	More	generally,	it	is	used	by	clearinghouses	to	identify	financial
transactions	that	require	further	investigation	as	potentially	fraudulent	or	as	cases
of	money	laundering.	It	is	used	in	insurance-claims	analysis	to	identify	claims
that	are	not	in	keeping	with	a	company’s	typical	claims.	In	cybersecurity,	it	is
used	to	identify	network	intrusions	by	detecting	possible	hacking	or	untypical
behavior	by	employees.	In	the	medical	domain,	identifying	anomalies	in	medical
records	can	be	useful	for	diagnosing	disease	and	in	studying	treatments	and	their
effects	on	the	body.	Finally,	with	the	proliferation	of	sensors	and	the	increasing
usage	of	Internet	of	Things	technology,	anomaly	detection	will	play	an	important



role	in	monitoring	data	and	alerting	us	when	abnormal	sensor	events	occur	and
action	is	required.

Do	You	Want	Fries	with	That?	(Association-Rule	Mining)

A	standard	strategy	in	sales	is	cross-selling,	or	suggesting	to	customers	who	are
buying	products	that	they	may	also	want	to	purchase	other	related	or
complementary	products.	The	idea	is	to	increase	the	customers’	overall	spending
by	getting	them	to	purchase	more	products	and	at	the	same	time	to	improve
customer	service	by	reminding	customers	of	products	they	probably	wanted	to
buy	but	may	have	forgotten	to	do	so.	The	classic	example	of	the	cross-sell	is
when	a	waiter	in	a	hamburger	restaurant	asks	a	customer	who	has	just	ordered	a
hamburger,	“Do	you	want	fries	with	that?”	Supermarkets	and	retailer	businesses
know	that	shoppers	purchase	products	in	groups,	and	they	use	this	information	to
set	up	cross-selling	opportunities.	For	example,	supermarket	customers	who	buy
hot	dogs	are	also	likely	to	purchase	ketchup	and	beer.	Using	this	type	of
information,	a	store	can	plan	the	layout	of	the	products.	Locating	hot	dogs,
ketchup,	and	beer	near	each	other	in	the	store	helps	customers	to	collect	this
group	of	items	quickly	and	may	also	boost	the	store	sales	because	customers
who	are	purchasing	hot	dogs	might	see	and	purchase	the	ketchup	and	beer	that
they	forgot	they	needed.	Understanding	these	types	of	associations	between
products	is	the	basis	of	all	cross-selling.
Association-rule	mining	is	an	unsupervised-data-analysis	technique	that	looks

to	find	groups	of	items	that	frequently	co-occur	together.	The	classic	case	of
association	mining	is	market-basket	analysis,	wherein	retail	companies	try	to
identify	sets	of	items	that	are	purchased	together,	such	as	hot	dogs,	ketchup,	and
beer.	To	do	this	type	of	data	analysis,	a	business	keeps	track	of	the	set	(or	basket)
of	items	that	each	customer	bought	during	each	visit	to	the	store.	Each	row	in	the
data	set	describes	one	basket	of	goods	purchased	by	a	particular	customer	on	a
particular	visit	to	the	store.	So	the	attributes	in	the	data	set	are	the	products	the
store	sells.	Given	these	data,	association-rule	mining	looks	for	items	that	co-
occur	within	each	basket	of	goods.	Unlike	clustering	and	anomaly	detection,
which	focus	on	identifying	similarities	or	differences	between	instances	(or
rows)	in	a	data	set,	association-rule	mining	focuses	on	looking	at	relationships
between	attributes	(or	columns)	in	a	data	set.	In	a	general	sense,	it	looks	for
correlations—measured	as	co-occurrences—between	products.	Using
association-rule	mining,	a	business	can	start	to	answer	questions	about	its



customers’	behaviors	by	looking	for	patterns	that	may	exist	in	the	data.
Questions	that	market-basket	analysis	can	be	used	to	answer	include:	Did	a
marketing	campaign	work?	Have	this	customer’s	buying	patterns	changed?	Has
the	customer	had	a	major	life	event?	Does	the	product	location	affect	buying
behavior?	Who	should	we	target	with	our	new	product?
The	Apriori	algorithm	is	the	main	algorithm	used	to	produce	the	association

rules.	It	has	a	two-step	process:

1.	 Find	all	combinations	of	items	in	a	set	of	transactions	that	occur	with	a
specified	minimum	frequency.	These	combinations	are	called	frequent
itemsets.

2.	 Generate	rules	that	express	the	probable	co-occurrence	of	items	within
frequent	itemsets.	The	Apriori	algorithm	calculates	the	probability	of	an	item
being	present	in	a	frequent	itemset	given	that	another	item	or	items	are
present.

The	Apriori	algorithm	generates	association	rules	that	express	probabilistic
relationships	between	items	in	frequent	itemsets.	An	association	rule	is	of	the
form	“IF	antecedent,	THEN	consequent.”	It	states	that	an	item	or	group	of	items,
the	antecedent,	implies	the	presence	of	another	item	in	the	same	basket	of	goods,
the	consequent,	with	some	probability.	For	example,	a	rule	derived	from	a
frequent	itemset	containing	A,	B,	and	C	might	state	that	if	A	and	B	are	included
in	a	transaction,	then	C	is	likely	to	also	be	included:
IF	{hot-dogs,	ketchup},	THEN	{beer}.
This	rule	indicates	that	customers	who	are	buying	hot	dogs	and	ketchup	are

also	likely	to	buy	beer.	A	frequent	example	of	the	power	of	association-rule
mining	is	the	beer-diapers	example	that	describes	how	an	unknown	US
supermarket	in	the	1980s	used	an	early	computer	system	to	analyze	its	checkout
data	and	identified	an	unusual	association	between	diapers	and	beer	in	customer
purchases.	The	theory	developed	to	understand	this	rule	was	that	families	with
young	children	were	preparing	for	the	weekend	and	knew	that	they	would	need
diapers	and	would	have	to	socialize	at	home.	The	store	placed	the	two	items	near
each	other,	and	sales	soared.	The	beer-and-diapers	story	has	been	debunked	as
apocryphal,	but	it	is	still	a	useful	example	of	the	potential	benefits	of
association-rule	mining	for	retail	businesses.
Two	main	statistical	measures	are	linked	with	association	rules:	support	and

confidence.	The	support	percentage	of	an	association	rule—or	the	ratio	of
transactions	that	include	both	the	antecedent	and	consequent	to	the	total	number
of	transactions—indicates	how	frequently	the	items	in	the	rule	occur	together.



The	confidence	percentage	of	an	association	rule—or	the	ratio	of	the	number	of
transactions	that	include	both	the	antecedent	and	consequent	to	the	number	of
transactions	that	includes	the	antecedent—is	the	conditional	probability	that	the
consequent	will	occur	given	the	occurrence	of	the	antecedent.	So,	for	example,	a
confidence	of	75	percent	for	the	association	rule	relating	hot	dogs	and	ketchup
with	beer	would	indicate	that	in	75	percent	of	cases	where	customers	purchased
both	hot	dogs	and	ketchup,	they	also	purchased	beer.	The	support	score	of	a	rule
simply	records	the	percentage	of	baskets	in	the	data	set	where	the	rule	holds.	For
example,	a	support	of	5	percent	indicates	that	5	percent	of	all	the	baskets	in	the
data	set	contain	all	three	items	in	the	rule	“hot	dogs,	ketchup,	and	beer.”
Even	a	small	data	set	can	result	in	the	generation	of	a	large	number	of

association	rules.	In	order	to	control	the	complexity	of	the	analysis	of	these
rules,	it	is	usual	to	prune	the	generated	rule	set	to	include	only	rules	that	have
both	a	high	support	and	a	high	confidence.	Rules	that	don’t	have	high	support	or
confidence	are	not	interesting	either	because	the	rule	covers	only	a	very	small
percentage	of	baskets	(low	support)	or	because	the	relationship	between	the
items	in	the	antecedent	and	the	consequent	is	low	(low	confidence).	Rules	that
are	trivial	or	inexplicable	should	also	be	pruned.	Trivial	rules	represent
associations	that	are	obvious	and	well	known	to	anyone	who	understands	the
business	domain.	An	inexplicable	rule	represents	associations	that	are	so	strange
that	it	is	difficult	to	understand	how	to	convert	the	rule	into	a	useful	action	for
the	company.	It	is	likely	that	an	inexplicable	rule	is	the	result	of	an	odd	data
sample	(i.e.,	the	rule	represents	a	spurious	correlation).	Once	the	rule	set	has
been	pruned,	the	data	scientist	can	then	analyze	the	remaining	rules	to
understand	what	products	are	associated	with	each	other	and	apply	this	new
information	in	the	organization.	Organizations	will	typically	use	this	new
information	to	determine	store	layout	or	to	perform	some	targeted	marketing
campaigns	to	their	customers.	These	campaigns	can	involve	updates	to	their
websites	to	include	recommended	products,	in-store	advertisements,	direct
mailings,	the	cross-selling	of	other	products	by	check-out	staff,	and	so	on.
Association	mining	becomes	more	powerful	if	the	baskets	of	items	are

connected	to	demographic	data	about	the	customer.	This	is	why	so	many
retailers	run	loyalty-card	schemes	because	such	schemes	allow	them	not	only	to
connect	different	baskets	of	goods	to	the	same	customer	through	time	but	also	to
connect	baskets	of	goods	to	the	customer’s	demographics.	Including	this
demographic	information	in	the	association	analysis	enables	the	analysis	to	be
focused	on	particular	demographics,	which	can	further	help	marketing	and
targeted	advertising.	For	example,	demographic-based	association	rules	can	be
used	with	new	customers,	for	whom	the	company	has	no	buying-habit



information	but	does	have	demographic	information.	An	example	of	an
association	rule	augmented	with	demographic	information	might	be
IF	gender(male)	and	age(<	35)	and	{hot-dogs,	ketchup},	THEN	{beer}.
[Support	=	2%,	Confidence	=	90%.]
The	standard	application	area	for	association-rule	mining	focuses	on	what

products	are	in	the	shopping	basket	and	what	products	are	not	in	the	shopping
basket.	This	assumes	that	the	products	are	purchased	in	one	visit	to	the	store	or
website.	This	kind	of	scenario	will	probably	work	in	most	retail	and	other	related
scenarios.	However,	association-rule	mining	is	also	useful	in	a	range	of	domains
outside	of	retail.	For	example,	in	the	telecommunications	industry,	applying
association-rule	mining	to	customer	usage	helps	telecommunications	companies
to	design	how	to	bundle	different	services	together	into	packages.	In	the
insurance	industry,	association-rule	mining	is	used	to	see	if	there	are	associations
between	products	and	claims.	In	the	medical	domain,	it	is	used	to	check	if	there
are	interactions	between	existing	and	new	treatments	and	medicines.	And	in
banking	and	financial	services,	it	is	used	to	see	what	products	customers
typically	have	and	whether	these	products	can	be	applied	to	new	or	existing
customers.	Association-rule	mining	can	also	be	used	to	analyze	purchasing
behavior	over	a	period	of	time.	For	example,	customers	tend	to	buy	product	X
and	Y	today,	and	in	three	months’	time	they	buy	product	Z.	This	time	period	can
be	considered	a	shopping	basket,	although	it	is	one	that	spans	three	months.
Applying	association-rule	mining	to	this	kind	of	temporally	defined	basket
expands	the	applications	areas	of	association-rule	mining	to	include	maintenance
schedules,	the	replacement	of	parts,	service	calls,	financial	products,	and	so	on.

Churn	or	No	Churn,	That	Is	the	Question	(Classification)
A	standard	business	task	in	customer-relationship	management	is	to	estimate	the
likelihood	that	an	individual	customer	will	take	an	action.	The	term	propensity
modeling	is	used	to	describe	this	task	because	the	goal	is	to	model	an
individual’s	propensity	to	do	something.	This	action	could	be	anything	from
responding	to	marketing	to	defaulting	on	a	loan	or	leaving	a	service.	The	ability
to	identify	customers	who	are	likely	to	leave	a	service	is	particularly	important
to	cell	phone	service	companies.	It	costs	a	cell	phone	service	company	a
substantial	amount	of	money	to	attract	new	customers.	In	fact,	it	is	estimated	that
it	generally	costs	five	to	six	times	more	to	attract	a	new	customer	than	it	does	to
retain	an	established	one	(Verbeke	et	al.	2011).	As	a	result,	many	cell	phone
service	companies	are	very	keen	to	retain	their	current	customers.	However,	they
also	want	to	minimize	costs.	So	although	it	would	be	easy	to	retain	customers	by



simply	giving	all	customers	reduced	rates	and	great	phone	upgrades,	this	is	not	a
realistic	option.	Instead,	they	want	to	target	the	offers	they	give	their	customers
to	just	those	customers	who	are	likely	to	leave	in	the	near	future.	If	they	can
identify	a	customer	who	is	about	to	leave	a	service	and	persuade	that	customer	to
stay,	perhaps	by	offering	her	an	upgrade	or	a	new	billing	package,	then	they	can
save	the	difference	between	the	price	of	the	enticement	they	gave	the	customer
and	the	cost	of	attracting	a	new	customer.
The	term	customer	churn	is	used	to	describe	the	process	of	customers	leaving

one	service	and	joining	another.	So	the	problem	of	predicting	which	customers
are	likely	to	leave	in	the	near	future	is	known	as	churn	prediction.	As	the	name
suggests,	this	is	a	prediction	task.	The	prediction	task	is	to	classify	a	customer	as
being	a	churn	risk	or	not.	Many	companies	are	using	this	kind	of	analysis	to
predict	churn	customers	in	the	telecommunications,	utilities,	banking,	insurance,
and	other	industries.	A	growing	area	that	companies	are	focusing	on	is	the
prediction	of	staff	turnover	or	staff	churn:	which	staff	are	likely	to	leave	the
company	within	a	certain	time	period.
When	a	prediction	model	returns	a	label	or	category	for	an	input,	it	is	known

as	a	classification	model.	Training	a	classification	model	requires	historic	data,
where	each	instance	is	labeled	to	indicate	whether	the	target	event	has	happened
for	that	instance.	For	example,	customer-churn	classification	requires	a	data	set
in	which	each	customer	(one	row	per	customer)	is	assigned	a	label	indicating
whether	he	or	she	has	churned.	The	data	set	will	include	an	attribute,	known	as
the	target	attribute,	that	lists	this	label	for	each	customer.	In	some	instances,
assigning	a	churn	label	to	a	customer	record	is	a	relatively	straightforward	task.
For	example,	the	customer	may	have	contacted	the	organization	and	explicitly
canceled	his	subscription	or	contract.	However,	in	other	cases	the	churn	event
may	not	be	explicitly	signaled.	For	example,	not	all	cell	phone	customers	have	a
monthly	contract.	Some	customers	have	a	pay-as-you-go	(or	prepay)	contract	in
which	they	top	up	their	account	at	irregular	intervals	when	they	need	more
phone	credit.	Defining	whether	a	customer	with	this	type	of	contract	has	churned
can	be	difficult:	Has	a	customer	who	hasn’t	made	a	call	in	two	weeks	churned,	or
is	it	necessary	for	a	customer	to	have	a	zero	balance	and	no	activity	for	three
weeks	before	she	is	considered	to	have	churned?	Once	the	churn	event	has	been
defined	from	a	business	perspective,	it	is	then	necessary	to	implement	this
definition	in	code	in	order	to	assign	a	target	label	to	each	customer	in	the	data
set.
Another	complicating	factor	in	constructing	the	training	data	set	for	a	churn-

prediction	model	is	that	time	lags	need	to	be	taken	into	account.	The	goal	of
churn	prediction	is	to	model	the	propensity	(or	likelihood)	that	a	customer	will



churn	at	some	point	in	the	future.	As	a	consequence,	this	type	of	model	has	a
temporal	dimension	that	needs	to	be	considered	during	the	creation	of	the	data
set.	The	set	of	attributes	in	a	propensity-model	data	set	are	drawn	from	two
separate	time	periods:	the	observation	period	and	the	outcome	period.	The
observation	period	is	when	the	values	of	the	input	attributes	are	calculated.	The
outcome	period	is	when	the	target	attribute	is	calculated.	The	business	goal	of
creating	a	customer-churn	model	is	to	enable	the	business	to	carry	out	some	sort
of	intervention	before	the	customer	churns—in	other	words,	to	entice	the
customer	to	stay	with	the	service.	This	means	that	the	prediction	about	the
customer	churning	must	be	made	sometime	in	advance	of	the	customer’s
actually	leaving	the	service.	The	length	of	this	period	is	the	length	of	the
outcome	period,	and	the	prediction	that	the	churn	model	returns	is	actually	that	a
customer	will	churn	within	this	outcome	period.	For	example,	the	model	might
be	trained	to	predict	that	the	customer	will	churn	within	one	month	or	two
months,	depending	on	the	speed	of	the	business	process	to	carry	out	the
intervention.
Defining	the	outcome	period	affects	what	data	should	be	used	as	input	to	the

model.	If	the	model	is	designed	to	predict	that	a	customer	will	churn	within	two
months	from	the	day	the	model	is	run	on	that	customer’s	record,	then	when	the
model	is	being	trained,	the	input	attributes	that	describe	the	historic	customers
who	have	already	churned	should	be	calculated	using	only	the	data	that	were
available	about	those	customers	two	months	prior	to	their	leaving	the	service.
The	input	attributes	describing	currently	active	customers	should	similarly	be
calculated	with	the	data	available	about	these	customers’	activity	two	months
earlier.	Creating	the	data	set	in	this	way	ensures	that	all	the	instances	in	the	data
set,	including	both	churned	and	active	customers,	describe	the	customers	at	the
time	in	their	individual	customer	journeys	that	the	model	is	being	designed	to
make	a	prediction	about	them:	in	this	example,	two	months	before	they	churn	or
stay.
Nearly	all	customer-propensity	models	will	use	attributes	describing	the

customer’s	demographic	information	as	input:	age,	gender,	occupation,	and	so
on.	In	scenarios	relating	to	an	ongoing	service,	they	are	also	likely	to	include
attributes	describing	the	customer’s	position	in	the	customer	life	cycle:	coming
on	board,	standing	still	midcycle,	approaching	end	of	a	contract.	There	are	also
likely	to	be	attributes	that	are	specific	to	the	industry.	For	example,	typical
attributes	used	in	telecommunication	industry	customer-churn	models	include
the	customer’s	average	bill,	changes	in	billing	amount,	average	usage,	staying
within	or	generally	exceeding	plan	minutes,	the	ratio	of	calls	within	the	network
to	those	outside	the	network,	and	potentially	the	type	of	phone	used.1	However,



the	specific	attributes	used	in	each	model	will	vary	from	one	project	to	the	next.
Gordon	Linoff	and	Michael	Berry	(2011)	report	that	in	one	churn-prediction
project	in	South	Korea,	the	researchers	found	it	useful	to	include	an	attribute	that
described	the	churn	rate	associated	with	a	customer’s	phone	(i.e.,	What
percentage	of	customers	with	this	particular	phone	churned	during	the
observation	period?).	However,	when	they	went	to	build	a	similar	customer-
churn	model	in	Canada,	the	handset/churn-rate	attribute	was	useless.	The
difference	was	that	in	South	Korea	the	cell	phone	service	company	offered	large
discounts	on	new	phones	to	new	customers,	whereas	in	Canada	the	same
discounts	were	offered	to	both	existing	and	new	customers.	The	overall	effect
was	that	in	South	Korea	phones	going	out	of	date	drove	customer	churn;	people
were	incentivized	to	leave	one	operator	for	another	in	order	to	avail	themselves
of	discounts,	but	in	Canada	this	incentive	to	leave	did	not	exist.
Once	a	labeled	data	set	has	been	created,	the	major	stage	in	creating	a

classification	model	is	to	use	an	ML	algorithm	to	build	the	classification	model.
During	modeling,	it	is	good	practice	to	experiment	with	a	number	of	different
ML	algorithms	to	find	out	which	algorithm	works	best	on	the	data	set.	Once	the
final	model	has	been	selected,	the	likely	accuracy	of	the	predictions	of	this
model	on	new	instances	is	estimated	by	testing	it	on	a	subset	of	the	data	set	that
was	not	used	during	the	model-training	phase.	If	a	model	is	deemed	accurate
enough	and	suitable	for	the	business	need,	the	model	is	then	deployed	and
applied	to	new	data	either	in	a	batch	process	or	in	real	time.	A	really	important
part	of	deploying	the	model	is	ensuring	that	the	appropriate	business	processes
and	resources	are	put	in	place	so	that	the	model	is	used	effectively.	There	is	no
point	in	creating	a	customer-churn	model	unless	there	is	a	process	whereby	the
model’s	predictions	result	in	triggering	customer	interventions	so	that	the
business	retains	customers.
In	addition	to	predicting	the	classification	label,	prediction	models	can	also

give	a	measure	of	how	confident	the	model	is	in	the	prediction.	This	measure	is
called	the	prediction	probability	and	will	have	a	value	between	0	and	1.	The
higher	the	value,	the	more	likely	the	prediction	is	correct.	The	prediction-
probability	value	can	be	used	to	prioritize	which	customers	to	focus	on.	For
example,	in	customer-churn	prediction	the	organization	wants	to	concentrate	on
the	customers	who	are	most	likely	to	leave.	By	using	the	prediction	probability
and	sorting	the	churners	based	on	this	value,	a	business	can	focus	on	the	key
customers	(those	most	likely	to	leave)	first	before	moving	on	to	customers	with	a
lower	prediction-probability	score.



How	Much	Will	It	Cost?	(Regression)

Price	prediction	is	the	task	of	estimating	the	price	that	a	product	will	cost	at	a
particular	point	in	time.	The	product	could	be	a	car,	a	house,	a	barrel	of	oil,	a
stock,	or	a	medical	procedure.	Having	a	good	estimate	of	what	something	will
cost	is	obviously	valuable	to	anyone	who	is	considering	buying	the	item.	The
accuracy	of	a	price-prediction	model	is	domain	dependent.	For	example,	due	to
the	variability	in	the	stock	market,	predicting	the	price	of	a	stock	tomorrow	is
very	difficult.	By	comparison,	it	may	be	easier	to	predict	the	price	of	a	house	at
an	auction	because	the	variation	in	house	prices	fluctuates	much	more	slowly
than	stocks.
The	fact	that	price	prediction	involves	estimating	the	value	of	a	continuous

attribute	means	that	it	is	treated	as	a	regression	problem.	A	regression	problem	is
structurally	very	similar	to	a	classification	problem;	in	both	cases,	the	data
science	solution	involves	building	a	model	that	can	predict	the	missing	value	of
an	attribute	given	a	set	of	input	attributes.	The	only	difference	is	that
classification	involves	estimating	the	value	of	a	categorical	attribute	and
regression	involves	estimating	the	value	of	a	continuous	attribute.	Regression
analysis	requires	a	data	set	where	the	value	of	the	target	attribute	for	each	of	the
historic	instances	is	listed.	The	multi-input	linear-regression	model	introduced	in
chapter	4	illustrated	the	basic	structure	of	a	regression	model,	with	most	other
regression	models	being	variants	of	this	approach.	The	basic	structure	of	a
regression	model	for	price	prediction	is	the	same	no	matter	what	product	it	is
applied	to;	all	that	varies	are	the	name	and	number	of	the	attributes.	For
example,	to	predict	the	price	of	a	house,	the	input	would	include	attributes	such
as	the	size	of	the	house,	the	number	of	rooms,	the	number	of	floors,	the	average
house	price	in	the	area,	the	average	house	size	in	the	area,	and	so	on.	By
comparison,	to	predict	the	price	of	a	car,	the	attributes	would	include	the	age	of
the	car,	the	number	of	miles	on	the	odometer,	the	engine	size,	the	make	of	the
car,	the	number	of	doors,	and	so	on.	In	each	case,	given	the	appropriate	data,	the
regression	algorithm	works	out	how	each	of	the	attributes	contributes	to	the	final
price.
As	has	been	the	case	with	all	the	examples	given	throughout	this	chapter,	the

application	example	of	using	a	regression	model	for	price	prediction	is
illustrative	only	of	the	type	of	problem	that	it	is	appropriate	to	frame	as	a
regression-modeling	task.	Regression	prediction	can	be	used	in	a	wide	variety	of
other	real-world	problems.	Typical	regression-prediction	problems	include



calculating	profit,	value	and	volume	of	sales,	sizes,	demand,	distances,	and
dosage.

Note

1. A	customer-churn	case	study	in	Kelleher,	Mac	Namee,	and	D’Arcy	2015
provides	a	longer	discussion	of	the	design	of	attributes	in	propensity	models.
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6 Privacy	and	Ethics

The	biggest	unknown	facing	data	science	today	is	how	societies	will	choose	to
answer	a	new	version	of	the	old	question	regarding	how	best	to	balance	the
freedoms	and	privacy	of	individuals	and	minorities	against	the	security	and
interests	of	society.	In	the	context	of	data	science,	this	old	question	is	framed	as
follows:	What	do	we	as	a	society	view	are	reasonable	ways	to	gather	and	use	the
data	relating	to	individuals	in	contexts	as	diverse	as	fighting	terrorism,
improving	medicine,	supporting	public-policy	research,	fighting	crime,	detecting
fraud,	assessing	credit	risk,	providing	insurance	underwriting,	and	advertising	to
targeted	groups?
The	promise	of	data	science	is	that	it	provides	a	way	to	understand	the	world

through	data.	In	the	current	era	of	big	data,	this	promise	is	very	tantalizing,	and,
indeed,	a	number	of	arguments	can	be	used	to	support	the	development	and
adoption	of	data-driven	infrastructure	and	technologies.	One	common	argument
relates	to	improving	efficiency,	effectiveness,	and	competiveness—an	argument
that,	at	least	in	the	business	context,	is	backed	by	some	academic	research.	For
example,	a	study	involving	179	large	publicly	traded	firms	in	2011	showed	that
the	more	data	driven	a	firm’s	decision	making	is,	the	more	productive	the	firm
is:	“We	find	that	firms	that	adopt	DDD	[data-driven	decision	making]	have
output	and	productivity	that	is	5–6%	higher	than	what	would	be	expected	given
their	other	investments	and	information	technology	usage”	(Brynjolfsson,	Hitt,
and	Kim	2011,	1).
Another	argument	for	increased	adoption	of	data	science	technologies	and

practices	relates	to	securitization.	For	a	long	time,	governments	have	used	the
argument	that	surveillance	improves	security.	And	since	the	terrorist	attacks	in
the	United	States	on	September	11,	2001,	as	well	as	with	each	subsequent
terrorist	attack	throughout	the	world,	the	argument	has	gained	traction.	Indeed,	it
was	frequently	used	in	the	public	debate	caused	by	Edward	Snowden’s
revelations	about	the	US	National	Security	Agency’s	PRISM	surveillance
program	and	the	data	it	routinely	gathered	on	US	citizens.	A	stark	example	of	the
power	of	this	argument	is	the	agency’s	US$1.7	billion	investment	in	a	data
center	in	Bluffdale,	Utah,	that	has	the	ability	to	store	huge	amounts	of



intercepted	communications	(Carroll	2013).
At	the	same	time,	however,	societies,	governments,	and	business	are	struggling

to	understand	the	long-term	implications	of	data	science	in	a	big-data	world.
Given	the	rapid	development	of	technologies	around	data	gathering,	data
storage,	and	data	analysis,	it	is	not	surprising	that	the	legal	frameworks	in	place
and	the	broader	ethical	discussions	around	data,	in	particular	the	question	of
individual	privacy,	are	running	behind	these	advances.	Notwithstanding	this
difficulty,	basic	legal	principles	around	data	collection	and	usage	are	important
to	understand	and	are	nearly	always	applicable.	Also,	the	ethical	debate	around
data	usage	and	privacy	has	highlighted	some	worrying	trends	that	we	as
individuals	and	citizens	should	be	aware	of.

Commercial	Interests	versus	Individual	Privacy

Data	science	can	be	framed	as	making	the	world	a	more	prosperous	and	secure
place	to	live.	But	these	same	arguments	can	be	used	by	very	different
organizations	that	have	very	distinct	agendas.	For	example,	contrast	calls	by	civil
liberties	groups	for	government	to	be	more	open	and	transparent	in	the
gathering,	use,	and	availability	of	data	in	the	hope	of	empowering	citizens	to
hold	these	same	governments	to	account	with	similar	calls	from	business
communities	who	hope	to	use	these	data	to	increase	their	profits	(Kitchin
2014a).	In	truth,	data	science	is	a	double-edged	sword.	It	can	be	used	to	improve
our	lives	through	more	efficient	government,	improved	medicine	and	health
care,	less-expensive	insurance,	smarter	cities,	reduced	crime,	and	many	more
ways.	At	the	same	time,	however,	it	can	also	be	used	to	spy	on	our	private	lives,
to	target	us	with	unwanted	advertising,	and	to	control	our	behavior	both	overtly
and	covertly	(the	fear	of	surveillance	can	affect	us	as	much	as	the	surveillance
itself	does).
The	contradictory	aspects	of	data	science	can	often	be	apparent	in	the	same

applications.	For	example,	the	use	of	data	science	in	health	insurance
underwriting	uses	third-party	marketing	data	sets	that	contain	information	such
as	purchasing	habits,	web	search	history,	along	with	hundreds	of	other	attributes
relating	to	people’s	lifestyles	(Batty,	Tripathi,	Kroll,	et	al.	2010).	The	use	of
these	third-party	data	is	troublesome	because	it	may	trigger	self-disciplining,
wherein	people	avoid	certain	activities,	such	as	visiting	extreme-sports	websites,
for	fear	of	incurring	higher	insurance	premiums	(Mayer-Schönberger	and	Cukier
2014).	However,	the	justification	for	the	use	of	these	data	is	that	it	acts	as	a



proxy	for	more	invasive	and	expensive	information	sources,	such	as	blood	tests,
and	in	the	long	term	will	reduce	costs	and	premiums	and	thereby	increase	the
number	of	people	with	health	insurance	(Batty,	Tripathi,	Kroll,	et	al.	2010).
The	fault	lines	in	the	debate	between	the	commercial	benefits	and	ethical

considerations	of	using	data	science	are	apparent	in	the	discussions	around	the
use	of	personal	data	for	targeted	marketing.	From	a	business	advertising
perspective,	the	incentive	to	use	personal	data	is	that	there	is	a	relationship
between	personalizing	marketing,	services,	and	products,	on	the	one	hand,	and
the	effectiveness	of	the	marketing,	on	the	other.	It	has	been	shown	that	the	use	of
personal	social	network	data—such	as	identifying	consumers	who	are	connected
to	prior	customers—increases	the	effectiveness	of	a	direct-mail	marketing
campaign	for	a	telecommunications	service	by	three	to	five	times	compared	to
traditional	marketing	approaches	(Hill,	Provost,	and	Volinsky	2006).	Similar
claims	have	been	made	about	the	effectiveness	of	data-driven	personalization	of
online	marketing.	For	example,	a	study	of	online	cost	and	effectiveness	of	online
targeted	advertising	in	the	United	States	in	2010	compared	run-of-the-network
marketing	(when	an	advertising	campaign	is	pushed	out	across	a	range	of
websites	without	specific	targeting	of	users	or	sites)	with	behavioral	targeting1
(Beales	2010).	The	study	found	that	behavioral	marketing	was	both	more
expensive	(2.68	times	more)	but	also	more	effective,	with	a	conversion	rate	more
than	twice	that	of	run-of-the-network	marketing.	Another	well-known	study	on
the	effectiveness	of	data-driven	online	advertising	was	conducted	by	researchers
from	the	University	of	Toronto	and	MIT	(Goldfarb	and	Tucker	2011).	They	used
the	enactment	of	a	privacy-protection	bill	in	the	European	Union	(EU)2	that
limited	the	ability	of	advertising	companies	to	track	users’	online	behavior	in
order	to	compare	the	effectiveness	of	online	advertising	under	the	new
restrictions	(i.e.,	in	the	EU)	and	the	effectiveness	online	advertising	not	under	the
new	restrictions	(i.e.,	in	the	United	States	and	other	non-EU	countries).	The
study	found	that	online	advertising	was	significantly	less	effective	under	the	new
restrictions,	with	a	reported	drop	of	65	percent	in	study	participants’	recorded
purchasing	intent.	The	results	of	this	study	have	been	contested	(see,	for
example,	Mayer	and	Mitchell	2012),	but	the	study	has	been	used	to	support	the
argument	that	the	more	data	that	are	available	about	an	individual,	the	more
effective	the	advertising	that	is	directed	to	that	individual	will	be.	Proponents	of
data-driven	targeted	marketing	frame	this	argument	as	a	win–win	for	both	the
advertiser	and	the	consumer,	claiming	that	advertisers	lower	marketing	costs	by
reducing	wasted	advertising	and	achieve	better	conversions	rates,	and	consumers
get	more	relevant	advertising.



This	utopian	perspective	on	the	use	of	personal	data	for	targeted	marketing	is
at	best	based	on	a	selective	understanding	of	the	problem.	Probably	one	of	the
most	worrying	stories	related	to	targeted	advertising	was	reported	in	the	New
York	Times	in	2012	and	involves	the	American	discount	retail	store	Target
(Duhigg	2012).	It	is	well	known	in	marketing	that	one	of	the	times	in	a	person’s
life	when	his	or	her	shopping	habits	change	radically	is	at	the	conception	and
birth	of	a	child.	Because	of	this	radical	change,	marketers	see	pregnancy	as	an
opportunity	to	shift	a	person’s	shopping	habits	and	brand	loyalties,	and	many
retailers	use	publicly	available	birth	records	to	trigger	personalized	marketing	for
new	parents,	sending	them	offers	relating	to	baby	products.	In	order	to	get	a
competitive	advantage,	Target	wanted	to	identify	pregnant	customers	at	an	early
stage	(ideally	during	the	second	trimester)	without	the	mother-to-be	voluntarily
telling	Target	that	she	was	pregnant.3	This	insight	would	enable	Target	to	begin
its	personalized	marketing	before	other	retailers	knew	the	baby	was	on	the	way.
To	achieve	this	goal,	Target	initiated	a	data	science	project	with	the	aim	of
predicting	whether	a	customer	was	pregnant	based	on	an	analysis	of	her
shopping	habits.	The	starting	point	for	the	project	was	to	analyze	the	shopping
habits	of	women	who	had	signed	up	for	Target’s	baby-shower	registry.	The
analysis	revealed	that	expectant	mothers	tended	to	purchase	larger	quantities	of
unscented	lotion	at	the	beginning	of	the	second	trimester	as	well	as	certain
dietary	supplements	throughout	the	first	20	weeks	of	pregnancy.	Based	on	this
analysis,	Target	created	a	data-driven	model	that	used	around	25	products	and
indictors	and	assigned	each	customer	a	“pregnancy-prediction”	score.	The
success,	for	want	of	a	better	word,	of	this	model	was	made	very	apparent	when	a
man	turned	up	at	a	Target	store	to	complain	about	the	fact	that	his	high-school-
age	daughter	had	been	mailed	coupons	for	baby	clothes	and	cribs.	He	accused
Target	of	trying	to	encourage	his	daughter	to	get	pregnant.	However,	over	the
subsequent	days	it	transpired	that	the	man’s	daughter	was	in	fact	pregnant	but
hadn’t	told	anyone.	Target’s	pregnancy-prediction	model	was	able	to	identify	a
pregnant	high	school	student	and	act	on	this	information	before	she	had	chosen
to	tell	her	family.

Ethical	Implications	of	Data	Science:	Profiling	and
Discrimination

The	story	about	Target	identifying	a	pregnant	high	school	student	without	her
consent	or	knowledge	highlights	how	data	science	can	be	used	for	social



profiling	not	only	of	individuals	but	also	of	minority	groups	in	society.	In	his
book	The	Daily	You:	How	the	New	Advertising	Industry	Is	Defining	Your	Identity
and	Your	Worth	(2013),	Joseph	Turow	discusses	how	marketers	use	digital
profiling	to	categorize	people	as	either	targets	or	waste	and	then	use	these
categories	to	personalize	the	offers	and	promotions	directed	to	individual
consumers:	“those	considered	waste	are	ignored	or	shunted	to	other	products	that
marketers	deem	more	relevant	to	their	tastes	or	income”	(11).	This
personalization	can	result	in	preferential	treatment	for	some	and	marginalization
of	others.	A	clear	example	of	this	discrimination	is	differential	pricing	on
websites,	wherein	some	customers	are	charged	more	than	other	customers	for	the
same	product	based	on	their	customer	profiles	(Clifford	2012).
These	profiles	are	constructed	by	integrating	data	from	a	number	of	different

noisy	and	partial	data	sources,	so	the	profiles	can	often	be	misleading	about	an
individual.	What	is	worse	is	that	these	marketing	profiles	are	treated	as	products
and	are	often	sold	to	other	companies,	with	the	result	that	a	negative	marketing
assessment	of	an	individual	can	follow	that	individual	across	many	domains.	We
have	already	discussed	the	use	of	marketing	data	sets	in	insurance	underwriting
(Batty,	Tripathi,	Kroll,	et	al.	2010),	but	these	profiles	can	also	make	their	way
into	credit-risk	assessments	and	many	other	decision	processes	that	affect
people’s	lives.	Two	aspects	of	these	marketing	profiles	make	them	particularly
problematic.	First,	they	are	a	black	box,	and,	second,	they	are	persistent.	The
black-box	nature	of	these	profiles	is	apparent	when	one	considers	that	it	is
difficult	for	an	individual	to	know	what	data	are	recorded	about	them,	where	and
when	the	data	were	recorded,	and	how	the	decision	processes	that	use	these	data
work.	As	a	result,	if	an	individual	ends	up	on	a	no-fly	list	or	a	credit	blacklist,	it
is	“difficult	to	determine	the	grounds	for	discrimination	and	to	challenge	them”
(Kitchin	2014a,	177).	What	is	more,	in	the	modern	world	data	are	often	stored
for	a	long	time.	So	data	recorded	about	an	event	in	an	individual’s	life	persists
long	after	an	event.	As	Turow	warns,	“Turning	individual	profiles	into	individual
evaluations	is	what	happens	when	a	profile	becomes	a	reputation”	(2013,	6).
Furthermore,	unless	used	very	carefully,	data	science	can	actually	perpetuate

and	reinforce	prejudice.	An	argument	is	sometimes	made	that	data	science	is
objective:	it	is	based	on	numbers,	so	it	doesn’t	encode	or	have	the	prejudicial
views	that	affect	human	decisions.	The	truth	is	that	data	science	algorithms
perform	in	an	amoral	manner	more	than	in	an	objective	manner.	Data	science
extracts	patterns	in	data;	however,	if	the	data	encode	a	prejudicial	relationship	in
society,	then	the	algorithm	is	likely	to	identify	this	pattern	and	base	its	outputs	on
the	pattern.	Indeed,	the	more	consistent	a	prejudice	is	in	a	society,	the	stronger
that	prejudicial	pattern	will	appear	in	the	data	about	that	society,	and	the	more



likely	a	data	science	algorithm	will	extract	and	replicate	that	pattern	of	prejudice.
For	example,	a	study	carried	out	by	academic	researchers	on	the	Google	Online
Advertising	system	found	that	the	system	showed	an	ad	relating	to	a	high-paying
job	more	frequently	to	participants	whose	Google	profile	identified	them	as	male
compared	to	participants	whose	profile	identified	them	as	female	(Datta,
Tschantz,	and	Datta	2015).
The	fact	that	data	science	algorithms	can	reinforce	prejudice	is	particularly

troublesome	when	data	science	is	applied	to	policing.	Predictive	Policing,	or
PredPol,4	is	a	data	science	tool	designed	to	predict	when	and	where	a	crime	is
most	likely	to	occur.	When	deployed	in	a	city,	PredPol	generates	a	daily	report
listing	a	number	of	hot	spots	on	a	map	(small	areas	500	feet	by	500	feet)	where
the	system	believes	crimes	are	likely	to	occur	and	tags	each	hot	spot	with	the
police	shift	during	which	the	system	believes	the	crime	will	occur.	Police
departments	in	both	the	United	States	and	the	United	Kingdom	have	deployed
PredPol.	The	idea	behind	this	type	of	intelligent-policing	system	is	that	policing
resources	can	be	efficiently	deployed.	On	the	surface,	this	seems	like	a	sensible
application	of	data	science,	potentially	resulting	in	efficient	targeting	of	crime
and	reducing	policing	costs.	However,	questions	have	been	raised	about	the
accuracy	of	PredPol	and	the	effectiveness	of	similar	predictive-policing
initiatives	(Hunt,	Saunders,	and	Hollywood	2014;	Oakland	Privacy	Working
Group	2015;	Harkness	2016).	The	potential	for	these	types	of	systems	to	encode
racial	or	class-based	profiling	in	policing	has	also	been	noted	(Baldridge	2015).
The	deployment	of	police	resources	based	on	historic	data	can	result	in	a	higher
police	presence	in	certain	areas—typically	economically	disadvantaged	areas—
which	in	turn	results	in	higher	levels	of	reported	crime	in	these	areas.	In	other
words,	the	prediction	of	crime	becomes	a	self-fulfilling	prophesy.	The	result	of
this	cycle	is	that	some	locations	will	be	disproportionately	targeted	by	police
surveillance,	causing	a	breakdown	in	trust	between	the	people	who	live	in	those
communities	and	policing	institutions	(Harkness	2016).
Another	example	of	data-driven	policing	is	the	Strategic	Subjects	List	(SSL)

used	by	the	Chicago	Police	Department	in	an	attempt	to	reduce	gun	crime.	The
list	was	first	created	in	2013,	and	at	that	time	it	listed	426	people	who	were
estimated	to	be	at	a	very	high	risk	of	gun	violence.	In	an	attempt	to	proactively
prevent	gun	crime,	the	Chicago	Police	Department	contacted	all	the	people	on
the	SSL	to	warn	them	that	they	were	under	surveillance.	Some	of	the	people	on
the	list	were	very	surprised	to	be	included	on	it	because	although	they	did	have
criminal	records	for	minor	offenses,	they	had	no	violence	on	their	records
(Gorner	2013).	One	question	to	ask	about	this	type	of	data	gathering	to	prevent
crime	is,	How	accurate	is	the	technology?	A	recent	study	found	that	the	people



on	the	SSL	for	2013	were	“not	more	or	less	likely	to	become	a	victim	of	a
homicide	or	shooting	than	the	comparison	group”	(Saunders,	Hunt,	and
Hollywood	2016).	However,	this	study	also	found	that	individuals	on	the	list
were	more	likely	to	be	arrested	for	a	shooting	incident,	although	it	did	point	out
that	this	greater	likelihood	could	have	been	created	by	the	fact	that	these
individuals	were	on	the	list,	which	resulted	in	increasing	police	officers’
awareness	of	these	individuals	(Saunders,	Hunt,	and	Hollywood	2016).
Responding	to	this	study,	the	Chicago	Police	Department	stated	that	it	regularly
updated	the	algorithm	used	to	compile	the	SSL	and	that	the	effectiveness	of	the
SSL	had	improved	since	2013	(Rhee	2016).	Another	question	about	data-driven
crime-prevention	lists	is,	How	does	an	individual	end	up	on	the	list?	The	2013
version	of	the	SSL	appears	to	have	been	compiled	using,	among	other	attributes
of	an	individual,	an	analysis	of	his	or	her	social	network,	including	the	arrest	and
shooting	histories	of	his	or	her	acquaintances	(Dokoupil	2013;	Gorner	2013).	On
the	one	hand,	the	idea	of	using	social	network	analysis	makes	sense,	but	it	opens
up	the	very	real	problem	of	guilt	by	association.	One	problem	with	this	type	of
approach	is	that	it	can	be	difficult	to	define	precisely	what	an	association
between	two	individuals	entails.	Is	living	on	the	same	street	enough	to	be	an
association?	Furthermore,	in	the	United	States,	where	the	vast	majority	of
inmates	in	prison	are	African	American	and	Latino	males,	allowing	predictive-
policing	algorithms	to	use	the	concept	of	association	as	an	input	is	likely	to
result	in	predictions	targeting	mainly	young	men	of	color	(Baldridge	2015).
The	anticipatory	nature	of	predictive	policing	means	that	individuals	may	be

treated	differently	not	because	of	what	they	have	done	but	because	of	data-
driven	inferences	about	what	they	might	do.	As	a	result,	these	types	of	systems
may	reinforce	discriminatory	practices	by	replicating	the	patterns	in	historic	data
and	may	create	self-fulfilling	prophecies.

Ethical	Implications	of	Data	Science:	Creating	a	Panopticon
If	you	spend	time	absorbing	some	of	the	commercial	boosterism	that	surrounds
data	science,	you	get	a	sense	that	any	problem	can	be	solved	using	data	science
technology	given	enough	of	the	right	data.	This	marketing	of	the	power	of	data
science	feeds	into	a	view	that	a	data-driven	approach	to	governance	is	the	best
way	to	address	complex	social	problems,	such	as	crime,	poverty,	poor	education,
and	poor	public	health:	all	we	need	to	do	to	solve	these	problems	is	to	put
sensors	into	our	societies	to	track	everything,	merge	all	the	data,	and	run	the
algorithms	to	generate	the	key	insights	that	provide	the	solution.
When	this	argument	is	accepted,	two	processes	are	often	intensified.	The	first



is	that	society	becomes	more	technocratic	in	nature,	and	aspects	of	life	begin	to
be	regulated	by	data-driven	systems.	Examples	of	this	type	of	technological
regulation	already	exist—for	example,	in	some	jurisdictions	data	science	is
currently	used	in	parole	hearings	(Berk	and	Bleich	2013)	and	sentencing	(Barry-
Jester,	Casselman,	and	Goldstein	2015).	For	an	example	outside	of	the	judicial
system,	consider	how	smart-city	technologies	regulate	traffic	flows	through
cities	with	algorithms	dynamically	deciding	which	traffic	flow	gets	priority	at	a
junction	at	different	times	of	day	(Kitchin	2014b).	A	by-product	of	this
technocratic	regulation	is	the	proliferation	of	the	sensors	that	support	the
automated	regulating	systems.	The	second	process	is	“control	creep,”	wherein
data	gathered	for	one	purpose	is	repurposed	and	used	to	regulate	in	another	way
(Innes	2001).	For	example,	road	cameras	that	were	installed	in	London	with	the
primary	purpose	of	regulating	congestion	and	implementing	congestion	charges
(the	London	congestion	charge	is	a	daily	charge	for	driving	a	vehicle	within
London	during	peak	times)	have	been	repurposed	for	security	tasks	(Dodge	and
Kitchin	2007).	Other	examples	of	control	creep	include	a	technology	called
ShotSpotter	that	consists	of	a	city-wide	network	of	microphones	designed	to
identify	gunshots	and	report	the	locations	of	them	but	that	also	records
conversations,	some	of	which	were	used	to	achieve	criminal	convictions
(Weissman	2015),	and	the	use	of	in-car	navigation	systems	to	monitor	and	fine
rental	car	drivers	who	drive	out	of	state	(Elliott	2004;	Kitchin	2014a).
An	aspect	of	control	creep	is	the	drive	to	merge	data	from	different	sources	so

as	to	provide	a	more	complete	picture	of	a	society	and	thereby	potentially	unlock
deeper	insights	into	the	problems	in	the	system.	There	are	often	good	reasons	for
the	repurposing	of	data.	Indeed,	calls	are	frequently	made	for	data	held	by
different	branches	of	government	to	be	merged	for	legitimate	purposes—for
example,	to	support	health	research	and	for	the	convenience	of	the	state	and	its
citizens.	From	a	civil	liberties	perspective,	however,	these	trends	are	very
concerning.	Heightened	surveillance,	the	integration	of	data	from	multiple
sources,	control	creep,	and	anticipatory	governance	(such	as	the	predictive-
policing	programs)	may	result	in	a	society	where	an	individual	may	be	treated
with	suspicion	simply	because	a	sequence	of	unrelated	innocent	actions	or
encounters	matches	a	pattern	deemed	suspicious	by	a	data-driven	regulatory
system.	Living	in	this	type	of	a	society	would	change	each	of	us	from	free
citizens	into	inmates	in	Bentham’s	Panopticon,5	constantly	self-disciplining	our
behaviors	for	fear	of	what	inferences	may	be	drawn	from	them.	The	distinction
between	individuals	who	believe	and	act	as	though	they	are	free	of	surveillance
and	individuals	who	self-discipline	out	of	fear	that	they	inhabit	a	Panopticon	is
the	primary	difference	between	a	free	society	and	a	totalitarian	state.



Á	la	recherche	du	privacy	perdu

As	individuals	engage	with	and	move	through	technically	modern	societies,	they
have	no	choice	but	to	leave	a	data	trail	behind	them.	In	the	real	world,	the
proliferation	of	video	surveillance	means	that	location	data	can	be	gathered
about	an	individual	whenever	she	appears	on	a	street	or	in	a	shop	or	car	park,
and	the	proliferation	of	cell	phones	means	that	many	people	can	be	tracked	via
their	phones.	Other	examples	of	real-world	data	gathering	include	the	recording
of	credit	card	purchases,	the	use	of	loyalty	schemes	in	supermarkets,	the	tracking
of	withdrawals	from	ATMs,	and	the	tracking	of	cell	phone	calls	made.	In	the
online	world,	data	are	gathered	about	individuals	when	they	visit	or	log	in	to
websites;	send	an	email;	engage	in	online	shopping;	rate	a	date,	restaurant,	or
store;	use	an	e-book	reader;	watch	a	lecture	in	a	massive	open	online	course;	or
like	or	post	something	on	a	social	media	site.	To	put	into	perspective	the	amount
of	data	that	are	gathered	on	the	average	individual	in	a	technologically	modern
society,	a	report	from	the	Dutch	Data	Protection	Authority	in	2009	estimated	that
the	average	Dutch	citizen	was	included	in	250	to	500	databases,	with	this	figure
rising	to	1,000	databases	for	more	socially	active	people	(Koops	2011).	Taken
together,	the	data	points	relating	to	an	individual	define	that	person’s	digital
footprint.
The	data	in	a	digital	footprint	can	be	gathered	in	two	contexts	that	are

problematic	from	a	privacy	perspective.	First,	data	can	be	collected	about	an
individual	without	his	knowledge	or	awareness.	Second,	in	some	contexts	an
individual	may	choose	to	share	data	about	himself	and	his	opinions	but	may
have	little	or	no	knowledge	of	or	control	over	how	these	data	are	used	or	how
they	will	be	shared	with	and	repurposed	by	third	parties.	The	terms	data	shadow
and	data	footprint6	are	used	to	distinguish	these	two	contexts	of	data	gathering:
an	individual’s	data	shadow	comprises	the	data	gathered	about	an	individual
without	her	knowledge,	consent,	or	awareness,	and	an	individual’s	data	footprint
consists	of	the	pieces	of	data	that	she	knowingly	makes	public	(Koops	2011).
The	collection	of	data	about	an	individual	without	her	knowledge	or	consent	is

of	course	worrying.	However,	the	power	of	modern	data	science	techniques	to
uncover	hidden	patterns	in	data	coupled	with	the	integration	and	repurposing	of
data	from	several	sources	means	that	even	data	collected	with	an	individual’s
knowledge	and	consent	in	one	context	can	have	negative	effects	on	that
individual	that	are	impossible	for	them	to	predict.	Today,	with	the	use	of	modern
data	science	techniques,	very	personal	information	that	we	may	not	want	to	be



made	public	and	choose	not	to	share	can	still	be	reliably	inferred	from	seemingly
unrelated	data	we	willingly	post	on	social	media.	For	example,	many	people	are
willing	to	like	something	on	Facebook	because	they	want	to	demonstrate	support
to	a	friend.	However,	by	simply	using	the	items	that	an	individual	has	liked	on
Facebook,	data-driven	models	can	accurately	predict	that	person’s	sexual
orientation,	political	and	religious	views,	intelligence	and	personality	traits,	and
use	of	addictive	substances	such	as	alcohol,	drugs,	and	cigarettes;	they	can	even
determine	whether	that	person’s	parents	stayed	together	until	he	or	she	was	21
years	old	(Kosinski,	Stillwell,	and	Graepel	2013).	The	out-of-context	linkages
made	in	these	models	is	demonstrated	by	how	liking	a	human	rights	campaign
was	found	to	be	predictive	of	homosexuality	(both	male	and	female)	and	by	how
liking	Hondas	was	found	to	be	predictive	of	not	smoking	(Kosinski,	Stillwell,
and	Graepel	2013).

Computational	Approaches	to	Preserving	Privacy

In	recent	years,	there	has	been	a	growing	interest	in	computational	approaches	to
preserving	individual	privacy	throughout	a	data-analysis	process.	Two	of	the
best-known	approaches	are	differential	privacy	and	federated	learning.
Differential	privacy	is	a	mathematical	approach	to	the	problem	of	learning

useful	information	about	a	population	while	at	the	same	time	learning	nothing
about	the	individuals	within	the	population.	Differential	privacy	uses	a	particular
definition	of	privacy:	the	privacy	of	an	individual	has	not	been	compromised	by
the	inclusion	of	his	or	her	data	in	the	data-analysis	process	if	the	conclusions
reached	by	the	analysis	would	have	been	the	same	independent	of	whether	the
individual’s	data	were	included	or	not.	A	number	of	processes	can	be	used	to
implement	differential	privacy.	At	the	core	of	these	processes	is	the	idea	of
injecting	noise	either	into	the	data-collection	process	or	into	the	responses	to
database	queries.	The	noise	protects	the	privacy	of	individuals	but	can	be
removed	from	the	data	at	an	aggregate	level	so	that	useful	population-level
statistics	can	be	calculated.	A	useful	example	of	a	procedure	for	injecting	noise
into	data	that	provides	an	intuitive	explanation	of	how	differential	privacy
processes	can	work	is	the	randomized-response	technique.	The	use	case	for	this
technique	is	a	survey	that	includes	a	sensitive	yes/no	question	(e.g.,	relating	to
law	breaking,	health	conditions,	etc.).	Survey	respondents	are	instructed	to
answer	the	sensitive	question	using	the	following	procedure:

1.	 Flip	a	coin	and	keep	the	result	of	the	coin	flip	secret.



2.	 If	tails,	respond	“Yes.”

3.	 If	heads,	respond	truthfully.

Half	the	respondents	will	get	tails	and	respond	“Yes”;	the	other	half	will
respond	truthfully.	Therefore,	the	true	number	of	“No”	respondents	in	the	total
population	is	(approximately)	twice	the	number	of	“No”	responses	(the	coin	is
fair	and	selects	randomly,	so	the	distribution	of	yes/no	responses	among	the
respondents	who	got	tails	should	mirror	the	number	of	respondents	who
answered	truthfully).	Given	the	true	count	for	“No,”	we	can	calculate	the	true
count	for	“Yes.”	However,	although	we	now	have	an	accurate	count	for	the
population	regarding	the	sensitive	“Yes”	condition,	it	is	not	possible	to	identify
for	which	of	the	“Yes”	respondents	the	sensitive	condition	actually	holds.	There
is	a	trade-off	between	the	amount	of	noise	injected	into	data	and	the	usefulness
of	the	data	for	data	analysis.	Differential	privacy	addresses	this	trade-off	by
providing	estimates	of	the	amount	of	noise	required	given	factors	such	as	the
distribution	of	data	within	the	database,	the	type	of	database	query	that	is	being
processed,	and	the	number	of	queries	through	which	we	wish	to	guarantee	an
individual’s	privacy.	Cynthia	Dwork	and	Aaron	Roth	(2014)	provide	an
introduction	to	differential	privacy	and	an	overview	of	several	approaches	to
implementing	differential	privacy.	Differential-privacy	techniques	are	now	being
deployed	in	a	number	of	consumer	products.	For	example,	Apple	uses
differential	privacy	in	iOS	10	to	protect	the	privacy	of	individual	users	while	at
the	same	time	learning	usage	patterns	to	improve	predictive	text	in	the
messaging	application	and	to	improve	search	functionality.
In	some	scenarios,	the	data	being	used	in	a	data	science	project	are	coming

from	multiple	disparate	sources.	For	example,	multiple	hospitals	may	be
contributing	to	a	single	research	project,	or	a	company	is	collecting	data	from	a
large	number	of	users	of	a	cell	phone	application.	Rather	than	centralizing	these
data	into	a	single	data	repository	and	doing	the	analysis	on	the	combined	data,	an
alternative	approach	is	to	train	different	models	on	the	subsets	of	the	data	at	the
different	data	sources	(i.e.,	at	the	individual	hospitals	or	on	the	phones	of	each
individual	user)	and	then	to	merge	the	separately	trained	models.	Google	uses
this	federated-learning	approach	to	improve	the	query	suggestions	made	by	the
Google	keyboard	on	Android	(McMahan	and	Ramage	2017).	In	Google’s
federated-learning	framework,	the	mobile	device	initially	has	a	copy	of	the
current	application	loaded.	As	the	user	uses	the	application,	the	application	data
for	that	user	are	collected	on	his	phone	and	used	by	a	learning	algorithm	that	is
local	to	the	phone	to	update	the	local	version	of	the	model.	This	local	update	of
the	model	is	then	uploaded	to	the	cloud,	where	it	is	averaged	with	the	model



updates	uploaded	from	other	user	phones.	The	core	model	is	then	updated	using
this	average.	With	the	use	of	this	process,	the	core	model	can	be	improved,	and
individual	users’	privacy	can	at	the	same	time	be	protected	to	the	extent	that	only
the	model	updates	are	shared—not	the	users’	usage	data.

Legal	Frameworks	for	Regulating	Data	Use	and	Protecting
Privacy

There	is	variation	across	jurisdictions	in	the	laws	relating	to	privacy	protection
and	permissible	data	usage.	However,	two	core	pillars	are	present	across	most
democratic	jurisdictions:	antidiscrimination	legislation	and	personal-data-
protection	legislation.
In	most	jurisdictions,	antidiscrimination	legislation	forbids	discrimination

based	on	any	of	the	following	grounds:	disability,	age,	sex,	race,	ethnicity,
nationality,	sexual	orientation,	and	religious	or	political	opinion.	In	the	United
States,	the	Civil	Rights	Act	of	19647	prohibits	discrimination	based	on	color,
race,	sex,	religion,	or	nationality.	Later	legislation	has	extended	this	list;	for
example,	the	Americans	with	Disabilities	Act	of	19908	extended	protection	to
people	against	discrimination	based	on	disabilities.	Similar	legalization	is	in
place	in	many	other	jurisdictions.	For	example,	the	Charter	of	Fundamental
Rights	of	the	European	Union	prohibits	discrimination	based	on	any	grounds,
including	race,	color,	ethnic	or	social	origin,	genetic	features,	sex,	age,	birth,
disability,	sexual	orientation,	religion	or	belief,	property,	membership	in	a
national	minority,	and	political	or	any	other	opinion	(Charter	2000).
A	similar	situation	of	variation	and	overlap	exists	with	respect	to	privacy

legislation	across	different	jurisdictions.	In	the	United	States,	the	Fair
Information	Practice	Principles	(1973)9	have	provided	the	basis	for	much	of	the
subsequent	privacy	legislation	in	that	jurisdiction.	In	the	EU,	the	Data	Protection
Directive	(Council	of	the	European	Union	and	European	Parliament	1995)	is	the
basis	for	much	of	that	jurisdiction’s	privacy	legislation.	The	General	Data
Protection	Regulations	(Council	of	the	European	Union	and	European
Parliament	2016)	expand	on	the	data	protection	principles	in	the	Data	Protection
Directive	and	provide	consistent	and	legally	enforceable	data	protection
regulations	across	all	EU	member	states.	However,	the	most	broadly	accepted
principles	relating	to	personal	privacy	and	data	are	the	Guidelines	on	the
Protection	of	Privacy	and	Transborder	Flows	of	Personal	Data	published	by	the



Organisation	for	Economic	Co-operation	and	Development	(OECD	1980).
Within	these	guidelines,	personal	data	are	defined	as	records	relating	to	an
identifiable	individual,	known	as	the	data	subject.	The	guidelines	define	eight
(overlapping)	principles	that	are	designed	to	protect	a	data	subject’s	privacy:

1.	 Collection	Limitation	Principle:	Personal	data	should	only	be	obtained
lawfully	and	with	the	knowledge	and	consent	of	the	data	subject.

2.	 Data	Quality	Principle:	Any	personal	data	that	are	collected	should	be
relevant	to	the	purpose	for	which	they	are	used;	they	should	be	accurate,
complete,	and	up	to	date.

3.	 Purpose	Specification	Principle:	At	or	before	the	time	that	personal	data	are
collected,	the	data	subject	should	be	informed	of	the	purpose	for	which	the
data	will	be	used.	Furthermore,	although	changes	of	purpose	are	permissible,
they	should	not	be	introduced	arbitrarily	(new	purposes	must	be	compatible
with	the	original	purpose)	and	should	be	specified	to	the	data	subject.

4.	 Use	Limitation	Principle:	The	use	of	personal	data	is	limited	to	the	purpose
that	the	data	subject	has	been	informed	of,	and	the	data	should	not	be
disclosed	to	third	parties	without	the	data	subject’s	consent	or	by	authority	of
law.

5.	 Safety	Safeguards	Principle:	Personal	data	should	be	protected	by	security
safeguards	against	deletion,	theft,	disclosure,	modification,	or	unauthorized
use.

6.	 Openness	Principle:	A	data	subject	should	be	able	to	acquire	information
with	reasonable	ease	regarding	the	collection,	storage,	and	use	of	his	or	her
personal	data.

7.	 Individual	Participation	Principle:	A	data	subject	has	the	right	to	access	and
challenge	personal	data.

8.	 Accountability	Principle:	A	data	controller	is	accountable	for	complying	with
the	principles.

Many	countries,	including	the	EU	and	the	United	States,	endorse	the	OECD
guidelines.	Indeed,	the	data	protection	principles	in	the	EU	General	Data
Protection	Regulations	can	be	broadly	traced	back	to	the	OECD	guidelines.	The
General	Data	Protection	Regulations	apply	to	the	collection,	storage,	transfer	and
processing	of	personal	data	relating	to	EU	citizens	within	the	EU	and	has
implications	for	the	flows	of	this	data	outside	of	the	EU.	Currently,	several
countries	are	developing	data	protection	laws	similar	to	and	consistent	with	the



General	Data	Protection	Regulations.

Toward	an	Ethical	Data	Science

It	is	well	known	that	despite	the	legal	frameworks	that	are	in	place,	nation-states
frequently	collect	personal	data	on	their	citizens	and	foreign	nationals	without
these	people’s	knowledge,	often	in	the	name	of	security	and	intelligence.
Examples	include	the	US	National	Security	Agency’s	PRISM	program;	the	UK
Government	Communications	Headquarters’	Tempora	program	(Shubber	2013);
and	the	Russian	government’s	System	for	Operative	Investigative	Activities
(Soldatov	and	Borogan	2012).	These	programs	affect	the	public’s	perception	of
governments	and	use	of	modern	communication	technologies.	The	results	of	the
Pew	survey	“Americans’	Privacy	Strategies	Post-Snowden”	in	2015	indicated
that	87	percent	of	respondents	were	aware	of	government	surveillance	of	phone
and	Internet	communications,	and	among	those	who	were	aware	of	these
programs	61	percent	stated	that	they	were	losing	confidence	that	these	programs
served	the	public	interest,	and	25	percent	reported	that	they	had	changed	how
they	used	technologies	in	response	to	learning	about	these	programs	(Rainie	and
Madden	2015).	Similar	results	have	been	reported	in	European	surveys,	with
more	than	half	of	Europeans	aware	of	large-scale	data	collection	by	government
agencies	and	most	respondents	stating	that	this	type	of	surveillance	had	a
negative	impact	on	their	trust	with	respect	to	how	their	online	personal	data	are
used	(Eurobarometer	2015).
At	the	same	time,	many	private	companies	avoid	the	regulations	around

personal	data	and	privacy	by	claiming	to	use	derived,	aggregated,	or	anonymized
data.	By	repackaging	data	in	these	ways,	companies	claim	that	the	data	are	no
longer	personal	data,	which,	they	argue,	permits	them	to	gather	data	without	an
individual’s	awareness	or	consent	and	without	having	a	clear	immediate	purpose
for	the	data;	to	hold	the	data	for	long	periods	of	time;	and	to	repurpose	the	data
or	sell	the	data	when	a	commercial	opportunity	arises.	Many	advocates	of	the
commercial	opportunities	of	data	science	and	big	data	argue	that	the	real
commercial	value	of	data	comes	from	their	reuse	or	“optional	value”	(Mayer-
Schönberger	and	Cukier	2014).	The	advocates	of	data	reuse	highlight	two
technical	innovations	that	make	data	gathering	and	storage	a	sensible	business
strategy:	first,	today	data	can	be	gathered	passively	with	little	or	no	effort	or
awareness	on	the	part	of	the	individuals	being	tracked;	and,	second,	data	storage
has	become	relatively	inexpensive.	In	this	context,	it	makes	commercial	sense	to



record	and	store	data	in	case	future	(potentially	unforeseeable)	commercial
opportunities	make	it	valuable.
The	modern	commercial	practices	of	hoarding,	repurposing,	and	selling	data

are	completely	at	odds	with	the	purpose	specification	and	use-limitation
principles	of	the	OECD	guidelines.	Furthermore,	the	collection-limitation
principle	is	undermined	whenever	a	company	presents	a	privacy	agreement	to	a
consumer	that	is	designed	to	be	unreadable	or	reserves	the	right	for	the	company
to	modify	the	agreement	without	further	consultation	or	notification	or	both.
Whenever	this	happens,	the	process	of	notification	and	granting	of	consent	is
turned	into	a	meaningless	box-ticking	exercise.	Similar	to	the	public	opinion
about	government	surveillance	in	the	name	of	security,	public	opinion	is	quite
negative	toward	commercial	websites’	gathering	and	repurposing	of	personal
data.	Again	using	American	and	European	surveys	as	our	litmus	test	for	wider
public	opinion,	a	survey	of	American	Internet	users	in	2012	found	that	62
percent	of	adults	surveyed	stated	that	they	did	not	know	how	to	limit	the
information	collected	about	them	by	websites,	and	68	percent	stated	that	they	did
not	like	the	practice	of	targeted	advertising	because	they	did	not	like	their	online
behavior	tracked	and	analyzed	(Purcell,	Brenner,	and	Rainie	2012).	A	recent
survey	of	European	citizens	found	similar	results:	69	percent	of	respondents	felt
that	the	collection	of	their	data	should	require	their	explicit	approval,	but	only	18
percent	of	respondents	actually	fully	read	privacy	statements.	Furthermore,	67
percent	of	respondents	stated	that	they	don’t	read	privacy	statements	because
they	found	them	too	long,	and	38	percent	stated	that	they	found	them	unclear	or
too	difficult	to	understand.	The	survey	also	found	that	69	percent	of	respondents
were	concerned	about	their	information	being	used	for	different	purposes	from
the	one	it	was	collected	for,	and	53	percent	of	respondents	were	uncomfortable
with	Internet	companies	using	their	personal	information	to	tailor	advertising
(Eurobarometer	2015).
So	at	the	moment	public	opinion	is	broadly	negative	toward	both	government

surveillance	and	Internet	companies’	gathering,	storing,	and	analyzing	of
personnel	data.	Today,	most	commentators	agree	that	data-privacy	legislation
needs	to	be	updated	and	that	changes	are	happening.	In	2012,	both	the	EU	and
the	United	States	published	reviews	and	updates	relating	to	data-protection	and
privacy	policies	(European	Commission	2012;	Federal	Trade	Commission	2012;
Kitchin	2014a,	173).	In	2013,	the	OECD	guidelines	were	extended	to	include,
among	other	updates,	more	details	in	relation	to	implementing	the	accountability
principle.	In	particular,	the	new	guidelines	define	the	data	controller’s
responsibilities	to	have	a	privacy-management	program	in	place	and	to	define
clearly	what	such	a	program	entails	and	how	it	should	be	framed	in	terms	of	risk



management	in	relation	to	personal	data	(OECD	2013).	In	2014,	a	Spanish
citizen,	Mario	Costeja	Gonzalez,	won	a	case	in	the	EU	Court	of	Justice	against
Google	(C-131/12	[2014])	asserting	his	right	to	be	forgotten.	The	court	held	that
an	individual	could	request,	under	certain	conditions,	an	Internet	search	engine
to	remove	links	to	webpages	that	resulted	from	searches	on	the	individual’s
name.	The	grounds	for	such	a	request	included	that	the	data	are	inaccurate	or	out
of	date	or	that	the	data	had	been	kept	for	longer	than	was	necessary	for
historical,	statistical,	or	scientific	purposes.	This	ruling	has	major	implications
for	all	Internet	search	engines	but	may	also	have	implications	for	other	big-data
hoarders.	For	example,	it	is	not	clear	at	present	what	the	implications	are	for
social	media	sites	such	as	Facebook	and	Twitter	(Marr	2015).	The	concept	of	the
right	to	be	forgotten	has	been	asserted	in	other	jurisdictions.	For	example,	the
California	“eraser”	law	asserts	a	minor’s	right	to	have	material	he	has	posted	on
an	Internet	or	mobile	service	removed	at	his	request.	The	law	also	prohibits
Internet,	online,	or	cell	phone	service	companies	from	compiling	personal	data
relating	to	a	minor	for	the	purposes	of	targeted	advertising	or	allowing	a	third
party	to	do	so.10	As	a	final	example	of	the	changes	taking	place,	in	2016	the	EU-
US	Privacy	Shield	was	signed	and	adopted	(European	Commission	2016).	Its
focus	is	on	harmonizing	data-privacy	obligations	across	the	two	jurisdictions.	Its
purpose	is	to	strengthen	the	data-protection	rights	for	EU	citizens	in	the	context
where	their	data	have	been	moved	outside	of	the	EU.	This	agreement	imposed
stronger	obligations	on	commercial	companies	with	regard	to	transparency	of
data	usage,	strong	oversight	mechanisms	and	possible	sanctions,	as	well	as
limitations	and	oversight	mechanisms	for	public	authorities	in	recording	or
accessing	personal	data.	However,	at	the	time	of	writing,	the	strength	and
effectiveness	of	the	EU-US	Privacy	Shield	is	being	tested	in	a	legal	case	in	the
Irish	courts.	The	reason	why	the	Irish	legal	system	is	at	the	center	of	this	debate
is	that	many	of	the	large	US	multinational	Internet	companies	(Google,
Facebook,	Twitter,	etc.)	have	their	European,	Middle	East,	and	Africa
headquarters	in	Ireland.	As	a	result,	the	data-protection	commissioner	for	Ireland
is	responsible	for	enforcing	EU	regulations	on	transnational	data	transfers	made
by	these	companies.	Recent	history	illustrates	that	it	is	possible	for	legal	cases	to
result	in	significant	and	swift	changes	in	the	regulation	of	how	personnel	data
are	handled.	In	fact,	the	EU-US	Privacy	Shield	is	a	direct	consequence	of	a	suit
filed	by	Max	Schrems,	an	Austrian	lawyer	and	privacy	activist,	against
Facebook.	The	outcome	of	Schrems’s	case	in	2015	was	to	invalidate	the	existing
EU-US	Safe	Harbor	agreement	with	immediate	effect,	and	the	EU-US	Privacy
Shield	was	developed	as	an	emergency	response	to	this	outcome.	Compared	to
the	original	Safe	Harbor	agreement,	the	Privacy	Shield	has	strengthened	EU



citizens’	data-privacy	rights	(O’Rourke	and	Kerr	2017),	and	it	may	well	be	that
any	new	framework	would	further	strengthen	these	rights.	For	example,	the	EU
General	Data	Protection	Regulations	will	provide	legally	enforceable	data
protection	to	EU	citizens	from	May	2018.
From	a	data	science	perspective,	these	examples	illustrate	that	the	regulations

around	data	privacy	and	protection	are	in	flux.	Admittedly,	the	examples	listed
here	are	from	the	US	and	EU	contexts,	but	they	are	indicative	of	broader	trends
in	relation	to	privacy	and	data	regulation.	It	is	very	difficult	to	predict	how	these
changes	will	play	out	in	the	long	term.	A	range	of	vested	interests	exist	in	this
domain:	consider	the	differing	agendas	of	big	Internet,	advertising	and
insurances	companies,	intelligence	agencies,	policing	authorities,	governments,
medical	and	social	science	research,	and	civil	liberties	groups.	Each	of	these
different	sectors	of	society	has	differing	goals	and	needs	with	regard	to	data
usage	and	consequently	has	different	views	on	how	data-privacy	regulation
should	be	shaped.	Furthermore,	we	as	individuals	will	probably	have	shifting
views	depending	on	the	perspective	we	adopt.	For	example,	we	might	be	quite
happy	for	our	personnel	data	to	be	shared	and	reused	in	the	context	of	medical
research.	However,	as	the	public-opinion	surveys	in	Europe	and	the	United
States	have	reported,	many	of	us	have	reservations	about	data	gathering,	reuse,
and	sharing	in	the	context	of	targeted	advertising.	Broadly	speaking,	there	are
two	themes	in	the	discourse	around	the	future	of	data	privacy.	One	view	argues
for	the	strengthening	of	regulations	relating	to	the	gathering	of	personal	data	and
in	some	cases	empowering	individuals	to	control	how	their	data	are	gathered,
shared,	and	used.	The	other	view	argues	for	deregulation	in	relation	to	the
gathering	of	data	but	also	for	stronger	laws	to	redress	the	misuse	of	personnel
data.	With	so	many	different	stakeholders	and	perspectives,	there	are	no	easy	or
obvious	answers	to	the	questions	posed	about	privacy	and	data.	It	is	likely	that
the	eventual	solutions	that	are	developed	will	be	defined	on	a	sector-by-sector
basis	and	consist	of	compromises	negotiated	between	the	relevant	stakeholders.
In	such	a	fluid	context,	it	is	best	to	act	conservatively	and	ethically.	As	we

work	on	developing	new	data	science	solutions	to	business	problems,	we	should
consider	ethical	questions	in	relation	to	personal	data.	There	are	good	business
reasons	to	do	so.	First,	acting	ethically	and	transparently	with	personal	data	will
ensure	that	a	business	will	have	good	relationships	with	its	customers.
Inappropriate	practices	around	personal	data	can	cause	a	business	severe
reputational	damage	and	cause	its	customer	to	move	to	competitors	(Buytendijk
and	Heiser	2013).	Second,	there	is	a	risk	that	as	data	integration,	reuse,	profiling,
and	targeting	intensify,	public	opinion	will	harden	around	data	privacy	in	the
coming	years,	which	will	lead	to	more-stringent	regulations.	Consciously	acting



transparently	and	ethically	is	the	best	way	to	ensure	that	the	data	science
solutions	we	develop	do	not	run	afoul	of	current	regulations	or	of	the	regulations
that	may	come	into	existence	in	the	coming	years.
Aphra	Kerr	(2017)	reports	a	case	from	2015	that	illustrates	how	not	taking

ethical	considerations	into	account	can	have	serious	consequences	for
technology	developers	and	vendors.	The	case	resulted	in	the	US	Federal	Trade
Commission	fining	app	game	developers	and	publishers	under	the	Children’s
Online	Privacy	Protection	Act.	The	developers	had	integrated	third-party
advertising	into	their	free-to-play	games.	Integrating	third-party	advertising	is
standard	practice	in	the	free-to-play	business	model,	but	the	problem	arose
because	the	games	were	designed	for	children	younger	than	13.	As	a	result,	in
sharing	their	users’	data	with	advertising	networks,	the	developers	where	in	fact
also	sharing	data	relating	to	children	and	as	a	result	violated	the	Children’s
Online	Privacy	Protection	Act.	Also,	in	one	instance	the	developers	failed	to
inform	the	advertising	networks	that	the	apps	were	for	children.	As	a	result,	it
was	possible	that	inappropriate	advertising	could	be	shown	to	children,	and	in
this	instance	the	Federal	Trade	Commission	ruled	that	the	game	publishers	were
responsible	for	ensuring	that	age-appropriate	content	and	advertising	were
supplied	to	the	game-playing	children.	There	has	been	an	increasing	number	of
these	types	of	cases	in	recent	years,	and	a	number	of	organizations,	including	the
Federal	Trade	Commission	(2012),	have	called	for	businesses	to	adopt	the
principles	of	privacy	by	design	(Cavoukian	2013).	These	principles	were
developed	in	the	1990s	and	have	become	a	globally	recognized	framework	for
the	protection	of	privacy.	They	advocate	that	protecting	privacy	should	be	the
default	mode	of	operation	for	the	design	of	technology	and	information	systems.
To	follow	these	principles	requires	a	designer	to	consciously	and	proactively
seek	to	embed	privacy	considerations	into	the	design	of	technologies,
organizational	practices,	and	networked	system	architectures.
Although	the	arguments	of	ethical	data	science	are	clear,	it	is	not	always	easy

to	act	ethically.	One	way	to	make	the	challenge	of	ethical	data	science	more
concrete	is	to	imagine	you	are	working	for	a	company	as	a	data	scientist	on	a
business-critical	project.	In	analyzing	the	data,	you	have	identified	a	number	of
interacting	attributes	that	together	are	a	proxy	for	race	(or	some	other	personal
attribute,	such	as	religion,	gender,	etc.).	You	know	that	legally	you	can’t	use	the
race	attribute	in	your	model,	but	you	believe	that	these	proxy	attributes	would
enable	you	to	circumvent	the	antidiscrimination	legislation.	You	also	believe	that
including	these	attributes	in	the	model	will	make	your	model	work,	although	you
are	naturally	concerned	that	this	successful	outcome	may	be	because	the	model
will	learn	to	reinforce	discrimination	that	is	already	present	in	the	system.	Ask



yourself:	“What	do	I	do?”

Note

1. Behavioral	targeting	uses	data	from	users’	online	activities—sites	visited,
clicks	made,	time	spent	on	a	site,	and	so	on—and	predictive	modeling	to
select	the	ads	shown	to	the	user.

2. The	EU	Privacy	and	Electronic	Communications	Directive	(2002/58/EC).

3. For	example,	some	expectant	women	explicitly	tell	retailers	that	they	are
pregnant	by	registering	for	promotional	new-mother	programs	at	the	stores.

4. For	more	on	PredPol,	see	http://www.predpol.com.

5. A	Panopticon	is	an	eighteenth-century	design	by	Jeremy	Bentham	for
institutional	buildings,	such	as	prisons	and	psychiatric	hospitals.	The	defining
characteristic	of	a	Panopticon	was	that	the	staff	could	observe	the	inmates
without	the	inmates’	knowledge.	The	underlying	idea	of	this	design	was	that
the	inmates	were	forced	to	act	as	though	they	were	being	watched	at	all	times.

6. As	distinct	from	digital	footprint.

7. Civil	Rights	Act	of	1964,	Pub.	L.	88-352,	78	Stat.	241,	at
https://www.gpo.gov/fdsys/pkg/STATUTE-78/pdf/STATUTE-78-Pg241.pdf.

8. Americans	with	Disabilities	Act	of	1990,	Pub.	L.	101-336,	104	Stat.	327,	at
https://www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/STATUTE-104-
Pg327.pdf.

9. The	Fair	Information	Practice	Principles	are	available	at
https://www.dhs.gov/publication/fair-information-practice-principles-fipps.

10. Senate	of	California,	SB-568	Privacy:	Internet:	Minors,	Business	and
Professions	Code,	Relating	to	the	Internet,	vol.	division	8,	chap.	22.1
(commencing	with	sec.	22580)	(2013),	at
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?
bill_id=201320140SB568.

http://www.predpol.com
https://www.gpo.gov/fdsys/pkg/STATUTE-78/pdf/STATUTE-78-Pg241.pdf
https://www.gpo.gov/fdsys/pkg/STATUTE-104/pdf/STATUTE-104-Pg327.pdf
https://www.dhs.gov/publication/fair-information-practice-principles-fipps
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201320140SB568


7 Future	Trends	and	Principles	of	Success

An	obvious	trend	in	modern	societies	is	the	proliferation	of	systems	that	can
sense	and	react	to	the	world:	smart	phones,	smart	homes,	self-driving	cars,	and
smart	cities.	This	proliferation	of	smart	devices	and	sensors	presents	challenges
to	our	privacy,	but	it	is	also	driving	the	growth	of	big	data	and	the	development
of	new	technology	paradigms,	such	as	the	Internet	of	Things.	In	this	context,
data	science	will	have	a	growing	impact	across	many	areas	of	our	lives.
However,	there	are	two	areas	where	data	science	will	lead	to	significant
developments	in	the	coming	decade:	personal	medicine	and	the	development	of
smart	cities.

Medical	Data	Science

In	recent	years,	the	medical	industry	has	been	looking	at	and	adopting	data
science	and	predictive	analytics.	Doctors	have	traditionally	had	to	rely	on	their
experiences	and	instincts	when	diagnosing	a	condition	or	deciding	on	what	the
next	treatment	might	be.	The	evidence-based	medicine	and	precision-medicine
movement	argue	that	medical	decisions	should	be	based	on	data,	ideally	linking
the	best	available	data	to	an	individual	patient’s	predicament	and	preferences.
For	example,	in	the	case	of	precision	medicine,	fast	genome-sequencing
technology	means	that	it	is	now	feasible	to	analyze	the	genomes	of	patients	with
rare	diseases	in	order	to	identify	mutations	that	cause	the	disease	so	as	to	design
and	select	appropriate	therapies	specific	to	that	individual.	Another	factor
driving	data	science	in	medicine	is	the	cost	of	health	care.	Data	science,	in
particular	predictive	analytics,	can	be	used	to	automate	some	health	care
processes.	For	example,	predictive	analytics	has	been	used	to	decide	when
antibiotics	and	other	medicines	should	be	administrated	to	babies	and	adults,	and
it	is	widely	reported	that	many	lives	have	been	saved	because	of	this	approach.
Medical	sensors	worn	or	ingested	by	the	patient	or	implanted	are	being

developed	to	continuously	monitor	a	patient’s	vital	signs	and	behaviors	and	how



his	or	her	organs	are	functioning	throughout	the	day.	These	data	are	continuously
gathered	and	fed	back	to	a	centralized	monitoring	server.	It	is	here	at	the
monitoring	server	that	health	care	professionals	access	the	data	being	generated
by	all	the	patients,	assess	their	conditions,	understand	what	effects	the	treatment
is	having,	and	compare	each	patient’s	results	to	those	of	other	patients	with
similar	conditions	to	inform	them	regarding	what	should	happen	next	in	each
patient’s	treatment	regime.	Medical	science	is	using	the	data	generated	by	these
sensors	and	integrating	it	with	additional	data	from	the	various	parts	of	the
medical	profession	and	the	pharmaceutical	industry	to	determine	the	effects	of
current	and	new	medicines.	Personalized	treatment	programs	are	being
developed	based	on	the	type	of	patient,	his	condition,	and	how	his	body	responds
to	various	medicines.	In	addition,	this	new	type	of	medical	data	science	is	now
feeding	into	new	research	on	medicines	and	their	interactions,	the	design	of
more	efficient	and	detailed	monitoring	systems,	and	the	uncovering	of	greater
insights	from	clinical	trials.

Smart	Cities

Various	cities	around	the	world	are	adopting	new	technology	to	be	able	to	gather
and	use	the	data	generated	by	their	citizens	in	order	to	better	manage	the	cities’
organizations,	utilities,	and	services.	There	are	three	core	enablers	of	this	trend:
data	science,	big	data,	and	the	Internet	of	Things.	The	name	“Internet	of	Things”
describes	the	internetworking	of	physical	devices	and	sensors	so	that	these
devices	can	share	information.	This	may	sound	mundane,	but	it	has	the	benefit
that	we	can	now	remotely	control	smart	devices	(such	as	our	home	if	it	is
properly	configured)	and	opens	the	possibility	that	networked	machine-to-
machine	communication	will	enable	smart	environments	to	autonomously
predict	and	react	to	our	needs	(for	example,	there	are	now	commercially
available	smart	refrigerators	that	can	warn	you	when	food	is	about	to	spoil	and
allows	you	to	order	fresh	milk	through	your	smart	phone).
Smart-city	projects	integrate	real-time	data	from	many	different	data	sources

into	a	single	data	hub,	where	they	are	analyzed	and	used	to	inform	management
and	planning	decisions.	Some	smart-city	projects	involve	building	brand-new
cities	that	are	smart	from	the	ground	up.	Both	Masdar	City	in	the	United	Arab
Emirates	and	Songdo	City	in	South	Korea	are	brand-new	cities	that	have	been
built	with	the	smart	technology	at	their	core	and	a	focus	on	being	eco-friendly
and	energy	efficient.	However,	most	smart-city	projects	involve	the	retrofitting



of	existing	cities	with	new	sensor	networks	and	data-processing	centers.	For
example,	in	the	SmartSantander	project	in	Spain,1	more	than	12,000	networked
sensors	have	been	installed	across	the	city	to	measure	temperature,	noise,
ambient	lighting,	carbon	monoxide	levels,	and	parking.	Smart-city	projects	often
focus	on	developing	energy	efficiency,	planning	and	routing	traffic,	and	planning
utility	services	to	match	population	needs	and	growth.
Japan	has	embraced	the	smart-city	concept	with	a	particular	focus	on	reducing

energy	usage.	The	Tokyo	Electric	Power	Company	(TEPC)	has	installed	more
than	10	million	smart	meters	across	homes	in	the	TEPC	service	area.2	At	the
same	time,	TEPC	is	developing	and	rolling	out	smart-phone	applications	that
enable	customers	to	track	the	electricity	used	in	their	homes	in	real	time	and	to
change	their	electricity	contract.	These	smart-phone	applications	also	enable	the
TEPC	to	send	each	customer	personalized	energy-saving	advice.	Outside	of	the
home,	smart-city	technology	can	be	used	to	reduce	energy	usage	through
intelligent	street	lighting.	The	Glasgow	Future	Cities	Demonstrator	is	piloting
street	lighting	that	switches	on	and	off	depending	on	whether	people	are	present.
Energy	efficiency	is	also	a	top	priority	for	all	new	buildings,	particularly	for
large	local	government	and	commercial	buildings.	These	buildings’	energy
efficiency	can	be	optimized	by	automatically	managing	climate	controls	through
a	combination	of	sensor	technology,	big	data,	and	data	science.	An	extra	benefit
of	these	smart-building	monitoring	systems	is	that	they	can	monitor	for	levels	of
pollution	and	air	quality	and	can	activate	the	necessary	controls	and	warnings	in
real	time.
Transport	is	another	area	where	cities	are	using	data	science.	Many	cities	have

implemented	traffic-monitoring	and	management	systems.	These	systems	use
real-time	data	to	control	the	flow	of	traffic	through	the	city.	For	example,	they
can	control	traffic-light	sequences	in	real	time,	in	some	cases	to	give	priority	to
public-transport	vehicles.	Data	on	city	transport	networks	are	also	useful	for
planning	public	transport.	Cities	are	examining	the	routes,	schedules,	and	vehicle
management	to	ensure	that	services	support	the	maximum	number	of	people	and
to	reduce	the	costs	associated	with	delivering	the	transport	services.	In	addition
to	modeling	the	public	network,	data	science	is	also	being	used	to	monitor
official	city	vehicles	to	ensure	their	optimal	usage.	Such	projects	combine	traffic
conditions	(collected	by	sensors	along	the	road	network,	at	traffic	lights,	etc.),
the	type	of	task	being	performed,	and	other	conditions	to	optimize	route
planning,	and	dynamic	route	adjustments	are	fed	to	the	vehicles	with	live
updates	and	changes	to	their	routes.
Beyond	energy	usage	and	transport,	data	science	is	being	used	to	improve	the



provision	of	utility	services	and	to	implement	longer-term	planning	of
infrastructure	projects.	The	efficient	provision	of	utility	services	is	constantly
being	monitored	based	on	current	usage	and	projected	usages,	and	the
monitoring	takes	into	account	previous	usage	in	similar	conditions.	Utility
companies	are	using	data	science	in	a	number	of	ways.	One	way	is	monitoring
the	delivery	network	for	the	utility:	the	supply,	the	quality	of	the	supply,	any
network	issues,	areas	that	require	higher-than-expected	usage,	automated
rerouting	of	the	supply,	and	any	anomalies	in	the	network.	Another	way	that
utility	companies	are	using	data	science	is	in	monitoring	their	customers.	They
are	looking	for	unusual	usage	that	might	indicate	some	criminality	(for	example,
a	grow	house),	customers	who	may	have	altered	the	equipment	and	meters	for
the	building	where	they	live,	and	customers	who	are	most	likely	to	default	on
their	payments.	Data	science	is	also	being	used	in	examining	the	best	way	to
allocate	housing	and	associated	services	in	city	planning.	Models	of	population
growth	are	built	to	forecast	into	the	future,	and	based	on	various	simulations	the
city	planners	can	estimate	when	and	where	certain	support	services,	such	as	high
schools,	are	needed.

Data	Science	Project	Principles:	Why	Projects	Succeed	or	Fail

A	data	science	project	sometimes	fails	insofar	as	it	doesn’t	deliver	what	was
hoped	for	because	it	gets	bogged	down	in	some	technical	or	political	issues,	does
not	deliver	useful	results,	and,	more	typically,	is	run	once	(or	a	couple	of	times)
but	never	run	again.	Just	like	Leo	Tolstoy’s	happy	families,3	the	success	of	a	data
science	project	is	dependent	on	a	number	of	factors.	Successful	data	science
projects	need	focus,	good-quality	data,	the	right	people,	the	willingness	to
experiment	with	multiple	models,	integration	into	the	business	information
technology	(IT)	architecture	and	processes,	buy-in	from	senior	management,	and
an	organization’s	recognition	that	because	the	world	changes,	models	go	out	of
date	and	need	to	be	rebuilt	semiregularly.	Failure	in	any	of	these	areas	is	likely	to
result	in	a	failed	project.	This	section	details	the	common	factors	that	determine
the	success	of	data	science	projects	as	well	as	the	typical	reasons	why	data
science	projects	fail.

Focus
Every	successful	data	science	project	begins	by	clearly	defining	the	problem	that
the	project	will	help	solve.	In	many	ways,	this	step	is	just	common	sense:	it	is



difficult	for	a	project	to	be	successful	unless	it	has	a	clear	goal.	Having	a	well-
defined	goal	informs	the	decisions	regarding	which	data	to	use,	what	ML
algorithms	to	use,	how	to	evaluate	the	results,	how	the	analysis	and	models	will
be	used	and	deployed,	and	when	the	optimal	time	might	be	to	go	through	the
process	again	to	update	the	analysis	and	models.

Data
A	well-defined	question	can	be	used	to	define	what	data	are	needed	for	the
project.	Having	a	clear	understanding	of	what	data	are	needed	helps	to	direct	the
project	to	where	these	required	data	are	located.	It	also	helps	with	defining	what
data	are	currently	unavailable	and	hence	identifies	some	additional	projects	that
can	look	at	capturing	and	making	available	these	data.	It	is	important,	however,
to	ensure	that	the	data	used	are	good-quality	data.	Organizations	may	have
applications	that	are	poorly	designed,	a	very	poor	data	model,	and	staff	who	are
not	trained	correctly	to	ensure	that	good	data	get	entered.	In	fact,	myriad	factors
can	lead	to	bad-quality	data	in	systems.	Indeed,	the	need	for	good-quality	data	is
so	important	that	some	organizations	have	hired	people	to	constantly	inspect	the
data,	assess	the	quality	of	the	data,	and	then	feed	back	ideas	on	how	to	improve
the	quality	of	the	data	captured	by	the	applications	and	by	the	people	inputting
the	data.	Without	good-quality	data,	it	is	very	difficult	for	a	data	science	project
to	succeed.
When	the	required	data	are	sourced,	it	is	always	important	to	check	what	data

are	being	captured	and	used	across	an	organization.	Unfortunately,	the	approach
to	sourcing	data	taken	by	some	data	science	projects	is	to	look	at	what	data	are
available	in	the	transactional	databases	(and	other	data	sources)	and	then	to
integrate	and	clean	these	data	before	going	on	to	data	exploration	and	analysis.
This	approach	completely	ignores	the	BI	team	and	any	data	warehouse	that
might	exist.	In	many	organizations,	the	BI	and	data-warehouse	team	is	already
gathering,	cleaning,	transforming,	and	integrating	the	organization’s	data	into
one	central	repository.	If	a	data	warehouse	already	exists,	then	it	probably
contains	all	or	most	of	the	data	required	by	a	project.	Therefore,	a	data
warehouse	can	save	a	significant	amount	of	time	on	integrating	and	cleaning	the
data.	It	will	also	have	much	more	data	than	the	current	transactional	databases
contain.	If	the	data	warehouse	is	used,	it	is	possible	to	go	back	a	number	of
years,	build	predictive	models	using	the	historic	data,	roll	these	models	through
various	time	periods,	and	then	measure	each	model’s	level	of	predictive
accuracy.	This	process	allows	for	the	monitoring	of	changes	in	the	data	and	how
they	affect	the	models.	In	addition,	it	is	possible	to	monitor	variations	in	the



models	that	are	produced	by	ML	algorithms	and	how	the	models	evolve	over
time.	Following	this	kind	of	approach	facilitates	the	demonstration	of	how	the
models	work	and	behave	over	a	number	of	years	and	helps	with	building	up	the
customer’s	confidence	in	what	is	being	done	and	what	can	be	achieved.	For
example,	in	one	project	where	five	years	of	historical	data	were	available	in	the
data	warehouse,	it	was	possible	to	demonstrate	that	the	company	could	have
saved	US$40	million	or	more	over	that	time	period.	If	the	data	warehouse	had
not	been	available	or	used,	then	it	would	not	have	been	possible	to	demonstrate
this	conclusion.	Finally,	when	a	project	is	using	personal	data	it	is	essential	to
ensure	that	the	use	of	this	data	is	in	line	with	the	relevant	antidiscrimination	and
privacy	regulations.

People
A	successful	data	science	project	often	involves	a	team	of	people	with	a	blend	of
data	science	competencies	and	skills.	In	most	organizations,	a	variety	of	people
in	existing	roles	can	and	should	contribute	to	data	science	projects:	people
working	with	databases,	people	who	work	with	the	ETL	process,	people	who
perform	data	integration,	project	managers,	business	analysts,	domain	experts,
and	so	on.	But	organizations	often	still	need	to	hire	data	science	specialists—that
is,	people	with	the	skills	to	work	with	big	data,	to	apply	ML,	and	to	frame	real-
world	problems	in	terms	of	data-driven	solutions.	Successful	data	scientists	are
willing	and	able	to	work	and	communicate	with	the	management	team,	end
users,	and	all	involved	to	show	and	explain	what	and	how	data	science	can
support	their	work.	It	is	difficult	to	find	people	who	have	both	the	required
technical	skill	set	and	the	ability	to	communicate	and	work	with	people	across	an
organization.	However,	this	blend	is	crucial	to	the	success	of	data	science
projects	in	most	organizations.

Models
It	is	import	to	experiment	with	a	variety	of	ML	algorithms	to	discover	which
works	best	with	the	data	sets.	All	too	often	in	the	literature,	examples	are	given
of	cases	where	only	one	ML	algorithm	was	used.	Maybe	the	authors	are
discussing	the	algorithm	that	worked	best	for	them	or	that	is	their	favorite.
Currently	there	is	a	great	deal	of	interest	in	the	use	of	neural	networks	and	deep
learning.	Many	other	algorithms	can	be	used,	however,	and	these	alternatives
should	be	considered	and	tested.	Furthermore,	for	data	science	projects	based	in
the	EU,	the	General	Data	Protection	Regulations,	which	go	into	effect	in	April
2018,	may	become	a	factor	in	determining	the	selection	of	algorithms	and



model.	A	potential	side	effect	of	these	regulations	is	that	an	individual’s	“right	to
explanation”	in	relation	to	automated	decision	processes	that	affect	them	may
limit	the	use	in	some	domains	of	complex	models	that	are	difficult	to	interpret
and	explain	(such	as	deep	neural	network	models).

Integration	with	the	Business
When	the	goal	of	a	data	science	project	is	being	defined,	it	is	vital	also	to	define
how	the	outputs	and	results	of	the	project	will	be	deployed	within	the
organization’s	IT	architecture	and	business	processes.	Doing	so	involves
identifying	where	and	how	the	model	is	to	be	integrated	within	existing	systems
and	how	the	generated	results	will	be	used	by	the	system	end	users	or	if	the
results	will	be	fed	into	another	process.	The	more	automated	this	process	is,	the
quicker	the	organization	can	respond	to	its	customers’	changing	profile,	thereby
reducing	costs	and	increasing	potential	profits.	For	example,	if	a	customer-risk
model	is	built	for	the	loan	process	in	a	bank,	it	should	be	built	into	the	front-end
system	that	captures	the	loan	application	by	the	customer.	That	way,	when	the
bank	employee	is	entering	the	loan	application,	she	can	be	given	live	feedback
by	the	model.	The	employee	can	then	use	this	live	feedback	to	address	any
issues	with	the	customer.	Another	example	is	fraud	detection.	It	can	take	four	to
six	weeks	to	identify	a	potential	fraud	case	that	needs	investigation.	By	using
data	science	and	building	it	into	transaction-monitoring	systems,	organizations
can	now	detect	potential	fraud	cases	in	near	real	time.	By	automating	and
integrating	data-driven	models,	quicker	response	times	are	achieved,	and	actions
can	be	taken	at	the	right	time.	If	the	outputs	and	models	created	by	a	project	are
not	integrated	into	the	business	processes,	then	these	outputs	will	not	be	used,
and,	ultimately,	the	project	will	fail.

Buy-in
For	most	projects	in	most	organizations,	support	by	senior	management	is
crucial	to	the	success	of	many	data	science	projects.	However,	most	senior	IT
managers	are	very	focused	on	the	here	and	now:	keeping	the	lights	on,	making
sure	their	day-to-day	applications	are	up	and	running,	making	sure	the	backups
and	recovery	processes	are	in	place	(and	tested),	and	so	on.	Successful	data
science	projects	are	sponsored	by	senior	business	managers	(rather	than	by	an	IT
manager)	because	the	former	are	focused	not	on	the	technology	but	on	the
processes	involved	in	the	data	science	project	and	how	the	outputs	of	the	data
science	project	can	be	used	to	the	organization’s	advantage.	The	more	focused	a
project	sponsor	is	on	these	factors,	the	more	successful	the	project	will	be.	He	or



she	will	then	act	as	the	key	to	informing	the	rest	of	the	organization	about	the
project	and	selling	it	to	them.	But	even	when	data	science	has	a	senior	manager
as	an	internal	champion,	a	data	science	strategy	can	still	fail	in	the	long	term	if
the	initial	data	science	project	is	treated	as	a	box-ticking	exercise.	The
organization	should	not	view	data	science	as	a	one-off	project.	For	an
organization	to	reap	long-term	benefits,	it	needs	to	build	its	capacity	to	execute
data	science	projects	often	and	to	use	the	outputs	of	these	projects.	It	takes	long-
term	commitment	from	senior	management	to	view	data	science	as	a	strategy.

Iteration
Most	data	science	projects	will	need	to	be	updated	and	refreshed	on	a
semiregular	basis.	For	each	new	update	or	iteration,	new	data	can	be	added,	new
updates	can	be	added,	maybe	new	algorithms	can	be	used,	and	so	on.	The
frequency	of	these	iterations	will	vary	from	project	to	project;	it	could	be	daily
or	quarterly	or	biannually	or	annually.	Checks	should	be	built	into	the
productionalized	data	science	outputs	to	detect	when	models	need	updating	(see
Kelleher,	Mac	Namee,	and	D’Arcy	2015	for	an	explanation	of	how	to	use	a
stability	index	to	identify	when	a	model	should	be	updated).

Final	Thoughts

Humans	have	always	abstracted	from	the	world	and	tried	to	understand	it	by
identifying	patterns	in	their	experiences	of	it.	Data	science	is	the	latest
incarnation	of	this	pattern-seeking	behavior.	However,	although	data	science	has
a	long	history,	the	breadth	of	its	impact	on	modern	life	is	without	precedent.	In
modern	societies,	the	words	precision,	smart,	targeted,	and	personalized	are
often	indicative	of	data	science	projects:	precision	medicine,	precision	policing,
precision	agriculture,	smart	cities,	smart	transport,	targeted	advertising,
personalized	entertainment.	The	common	factor	across	all	these	areas	of	human
life	is	that	decisions	have	to	be	made:	What	treatment	should	we	use	for	this
patient?	Where	should	we	allocate	our	policing	resources?	How	much	fertilizer
should	we	spread?	How	many	high	schools	do	we	need	to	build	in	the	next	four
years?	Who	should	we	send	this	advertisement	to?	What	movie	or	book	should
we	recommend	to	this	person?	The	power	of	data	science	to	help	with	decision
making	is	driving	its	adoption.	Done	well,	data	science	can	provide	actionable
insight	that	leads	to	better	decisions	and	ultimately	better	outcomes.
Data	science,	in	its	modern	guise,	is	driven	by	big	data,	computer	power,	and



human	ingenuity	from	a	number	of	fields	of	scientific	endeavor	(from	data
mining	and	database	research	to	machine	learning).	This	book	has	tried	to
provide	an	overview	of	the	fundamental	ideas	and	concepts	required	to
understand	data	science.	The	CRISP-DM	project	life	cycle	makes	the	data
science	process	explicit	and	provides	a	structure	for	the	data	science	journey
from	data	to	wisdom:	understand	the	problem,	prepare	the	data,	use	ML	to
extract	patterns	and	create	models,	use	the	models	to	get	actionable	insight.	The
book	also	touches	on	some	of	the	ethical	concerns	relating	to	individual	privacy
in	a	data	science	world.	People	have	genuine	and	well-founded	concerns	that
data	science	has	the	potential	to	be	used	by	governments	and	vested	interests	to
manipulate	our	behaviors	and	police	our	actions.	We,	as	individuals,	need	to
develop	informed	opinions	about	what	type	of	a	data	world	we	want	to	live	in
and	to	think	about	the	laws	we	want	our	societies	to	develop	in	order	to	steer	the
use	of	data	science	in	appropriate	directions.	Despite	the	ethical	concerns	we
may	have	around	data	science,	the	genie	is	already	very	much	out	of	the	bottle:
data	science	is	having	and	will	continue	to	have	significant	effects	on	our	daily
lives.	When	used	appropriately,	it	has	the	potential	to	improve	our	lives.	But	if
we	want	the	organizations	we	work	with,	the	communities	we	live	in,	and	the
families	we	share	our	lives	with	to	benefit	from	data	science,	we	need	to
understand	and	explore	what	data	science	is,	how	it	works,	and	what	it	can	(and
can’t)	do.	We	hope	this	book	has	given	you	the	essential	foundations	you	need	to
go	on	this	journey.

Notes

1. For	more	on	the	SmartSantander	project	in	Spain,	see
http://smartsantander.eu.

2. For	more	on	the	TEPC’s	projects,	see	http://www.tepco.co.jp/en/press/corp-
com/release/2015/1254972_6844.html.

3. Leo	Tolstoy’s	book	Anna	Karenina	(1877)	begins:	“All	happy	families	are
alike;	each	unhappy	family	is	unhappy	in	its	own	way.”	Tolstoy’s	idea	is	that
to	be	happy,	a	family	must	be	successful	in	a	range	of	areas	(love,	finance,
health,	in-laws),	but	failure	in	any	of	these	areas	will	result	in	unhappiness.
So	all	happy	families	are	the	same	because	they	are	successful	in	all	areas,
but	unhappy	families	can	be	unhappy	for	many	different	combinations	of

http://smartsantander.eu
http://www.tepco.co.jp/en/press/corp-com/release/2015/1254972_6844.html


reasons.



Glossary

Analytics	Base	Table
A	table	in	which	each	row	contains	the	data	relating	to	a	specific	instance
and	each	column	describes	the	values	of	a	particular	attribute	for	each
instance.	These	data	are	the	basic	input	to	data-mining	and	machine-learning
algorithms.

Anomaly	Detection
Searching	for	and	identifying	examples	of	atypical	data	in	a	data	set.	These
nonconforming	cases	are	often	referred	to	as	anomalies	or	outliers.	This
process	is	often	used	in	analyzing	financial	transactions	to	identify	potential
fraudulent	activities	and	to	trigger	investigations.

Association-Rule	Mining
An	unsupervised	data-analysis	technique	that	looks	to	find	groups	of	items
that	frequently	co-occur	together.	The	classic	use	case	is	market-basket
analysis,	where	retail	companies	try	to	identify	sets	of	items	that	are
purchased	together,	such	as	the	hot	dogs,	ketchup,	and	beer.

Attribute
Each	instance	in	a	data	set	is	described	by	a	number	of	attributes	(also	known
as	features	or	variables).	An	attribute	captures	one	piece	of	information
relating	to	an	instance.	An	attribute	can	be	either	raw	or	derived.

Backpropagation
The	backpropagation	algorithm	is	an	ML	algorithm	used	to	train	neural
networks.	The	algorithm	calculates	for	each	neuron	in	a	network	the
contribution	the	neuron	makes	to	the	error	of	the	network.	Using	this	error
calculation	for	each	neuron	it	is	possible	to	update	the	weights	on	the	inputs
to	each	neuron	so	as	to	reduce	the	overall	error	of	the	network.	The
backpropagation	algorithm	is	so	named	because	it	works	in	a	two	stage
process.	In	the	first	stage	an	instance	is	input	to	the	network	and	the
information	flows	forward	through	the	network	until	the	network	generates	a
prediction	for	that	instance.	In	the	second	stage	the	error	of	the	network	on
that	instance	is	calculated	by	comparing	the	network's	prediction	to	the



correct	output	for	that	instance	(as	specified	by	the	training	data)	and	then
this	error	is	then	shared	back	(or	backpropagated)	through	the	neurons	in	the
network	on	a	layer	by	layer	basis	beginning	at	the	output	layer.

Big	Data
Big	data	are	often	defined	in	terms	of	the	three	Vs:	the	extreme	volume	of
data,	the	variety	of	the	data	types,	and	the	velocity	at	which	the	data	must	be
processed.

Captured	Data
Data	that	are	captured	through	a	direct	measurement	process	that	is	designed
to	gather	the	data.	Contrast	with	exhaust	data.

Classification
The	task	of	predicting	a	value	for	a	target	attribute	of	an	instance	based	on
the	values	of	a	set	of	input	attributes,	where	the	target	attribute	is	a	nominal
or	ordinal	data	type.

Clustering
Identifying	groups	of	similar	instances	in	a	data	set.

Correlation
The	strength	of	association	between	two	attributes.

Cross	Industry	Standard	Process	for	Data	Mining	(CRISP-DM)
The	CRISP-DM	defines	a	standard	life	cycle	for	a	data-mining	project.	The
life	cycle	is	often	adopted	for	data	science	projects.

Data
In	its	most	basic	form,	a	piece	of	data	is	an	abstraction	(or	measurement)
from	a	real-world	entity	(person,	object,	or	event).

Data	Analysis
Any	process	for	extracting	useful	information	from	data.	Types	of	data
analysis	include	data	visualization,	summary	statistics,	correlation	analysis,
and	modeling	using	machine	learning.

Database
A	central	repository	of	data.	The	most	common	database	structure	is	a
relational	database,	which	stores	data	in	tables	with	a	structure	of	one	row
per	instance	and	one	column	per	attribute.	This	representation	is	ideal	for
storing	data	with	a	clear	structure	that	can	be	decomposed	into	natural
attributes.

Data	Mining
The	process	of	extracting	useful	patterns	from	a	data	set	to	solve	a	well-



defined	problem.	CRISP-DM	defines	the	standard	life	cycle	for	a	data-
mining	project.	Closely	related	to	data	science	but	in	general	not	as	broad	in
scope.

Data	Science
An	emerging	field	that	integrates	a	set	of	problem	definitions,	algorithms,
and	processes	that	can	be	used	to	analyze	data	so	as	to	extract	actionable
insight	from	(large)	data	sets.	Closely	related	to	the	field	of	data	mining	but
broader	in	scope	and	concern.	Deals	with	both	structured	and	unstructured
(big)	data	and	encompasses	principles	from	a	range	of	fields,	including
machine	learning,	statistics,	data	ethics	and	regulation,	and	high-performance
computing.

Data	Set
A	collection	of	data	relating	to	a	set	of	instances,	with	each	instance
described	in	terms	of	a	set	of	attributes.	In	its	most	basic	form,	a	data	set	is
organized	in	an	n	*	m	matrix,	where	n	is	the	number	of	instances	(rows)	and
m	is	the	number	of	attributes	(columns).

Data	Warehouse
A	centralized	repository	containing	data	from	a	range	of	sources	across	an
organization.	The	data	are	structured	to	support	summary	reports	from	the
aggregated	data.	Online	analytical	processing	(OLAP)	is	the	term	used	to
describe	the	typical	operations	on	a	data	warehouse.

Decision	Tree
A	type	of	prediction	model	that	encodes	if-then-else	rules	in	a	tree	structure.
Each	node	in	the	tree	defines	one	attribute	to	test,	and	a	path	from	the	root
node	to	a	terminating	leaf	node	defines	a	sequence	of	tests	that	an	instance
must	pass	for	the	label	of	the	terminating	node	to	be	predicted	for	that
instance.

Deep	Learning
A	deep-learning	model	is	a	neural	network	that	has	multiple	(more	than	two)
layers	of	hidden	units	(or	neurons).	Deep	networks	are	deep	in	terms	of	the
number	of	layers	of	neurons	in	the	network.	Today	many	deep	networks	have
tens	to	hundreds	of	layers.	The	power	of	deep-learning	models	comes	from
the	ability	of	the	neurons	in	the	later	layers	to	learn	useful	attributes	derived
from	attributes	that	were	themselves	learned	by	the	neurons	in	the	earlier
layers.

Derived	Attribute
An	attribute	whose	value	is	generated	by	applying	a	function	to	other	data



rather	than	a	direct	measurement	taken	from	the	entity.	An	attribute	that
describes	an	average	value	in	a	population	is	an	example	of	a	derived
attribute.	Contrast	with	raw	attribute.

DIKW	Pyramid
A	model	of	the	structural	relationships	between	data,	information,
knowledge,	and	wisdom.	In	the	DIKW	pyramid,	data	precedes	information,
which	precedes	knowledge,	which	precedes	wisdom.

Exhaust	Data
Data	that	are	a	by-product	of	a	process	whose	primary	purpose	is	something
other	than	data	capture.	For	example,	for	every	image	shared,	tweeted,
retweeted,	or	liked,	a	range	of	exhaust	data	is	generated:	who	shared,	who
viewed,	what	device	was	used,	what	time	of	day,	and	so	on.	Contrast	with
captured	data.

Extraction,	Transformation,	and	Load	(ETL)
ETL	is	the	term	used	to	describe	the	typical	processes	and	tools	used	to
support	the	mapping,	merging,	and	movement	of	data	between	databases.

Hadoop
Hadoop	is	an	open-source	framework	developed	by	the	Apache	Software
Foundation	that	is	designed	for	the	processing	of	big	data.	It	uses	distributed
storage	and	processing	across	clusters	of	commodity	hardware.

High-Performance	Computing	(HPC)
The	field	of	HPC	focuses	on	designing	and	implementing	frameworks	to
connect	large	number	of	computers	together	so	that	the	resulting	computer
cluster	can	store	and	process	large	amounts	of	data	efficiently.

In-Database	Machine	Learning
Using	machine-learning	algorithms	that	are	built	into	the	database	solution.
The	benefit	of	in-database	machine	learning	is	that	it	reduces	the	time	spent
on	moving	data	in	and	out	of	databases	for	analysis.

Instance
Each	row	in	a	data	set	contains	the	information	relating	to	one	instance	(also
known	as	an	example,	entity,	case,	or	record).

Internet	of	Things
The	internetworking	of	physical	devices	and	sensors	so	that	these	devices
can	share	information.	Includes	the	field	of	machine-to-machine
communication,	which	develops	systems	that	enable	machines	not	only	to
share	information	but	also	to	react	to	this	information	and	trigger	actions



without	human	involvement.
Linear	Regression

When	a	linear	relationship	is	assumed	in	a	regression	analysis,	the	analysis
is	called	linear	regression.	A	popular	type	of	prediction	model	used	to
estimate	the	value	of	a	numeric	target	attribute	based	on	a	set	of	numeric
input	attributes.

Machine	Learning	(ML)
The	field	of	computer	science	research	that	focuses	on	developing	and
evaluating	algorithms	that	can	extract	useful	patterns	from	data	sets.	A
machine-learning	algorithm	takes	a	data	set	as	input	and	returns	a	model
that	encodes	the	patterns	the	algorithm	extracted	from	the	data.

Massively	Parallel	Processing	Database	(MPP)
In	an	MPP	database,	data	is	partitioned	across	multiple	servers,	and	each
server	can	process	the	data	on	that	server	locally	and	independently.

Metadata
Data	describing	the	structures	and	properties	of	other	data—for	example,	a
time	stamp	that	describes	when	a	piece	of	data	was	collected.	Metadata	are
one	of	the	most	common	types	of	exhaust	data.

Model
In	the	context	of	machine	learning,	a	model	is	a	representation	of	a	pattern
extracted	using	machine	learning	from	a	data	set.	Consequently,	models	are
trained,	fitted	to	a	data	set,	or	created	by	running	a	machine	learning
algorithm	on	a	data	set.	Popular	model	representations	include	decision	trees
and	neural	networks.	A	prediction	model	defines	a	mapping	(or	function)
from	a	set	of	input	attributes	to	a	value	for	a	target	attribute.	Once	a	model
has	been	created,	it	can	then	be	applied	to	new	instances	from	the	domain.
For	example,	in	order	to	train	a	spam	filter	model,	we	would	apply	a	machine
learning	algorithm	to	a	data	set	of	historic	emails	that	have	been	labeled	as
spam	or	not	spam.	Once	the	model	has	been	trained	it	can	be	used	to	label
(or	filter)	new	emails	that	were	not	in	the	original	data	set.

Neural	Network
A	type	of	machine-learning	model	that	is	implemented	as	a	network	of
simple	processing	units	called	neurons.	It	is	possible	to	create	a	variety	of
different	types	of	neural	networks	by	modifying	the	topology	of	the	neurons
in	the	network.	A	feed-forward,	fully	connected	neural	network	is	a	very
common	type	of	network	that	can	be	trained	using	backpropagation.

Neuron



A	neuron	takes	a	number	of	input	values	(or	activations)	as	input	and	maps
these	values	to	a	single	output	activation.	This	mapping	is	typically
implemented	by	applying	a	multi-input	linear-regression	function	to	the
inputs	and	then	pushing	the	result	of	this	regression	function	through	a
nonlinear	activation	function,	such	as	the	logistic	or	tanh	function.

Online	Analytical	Processing	(OLAP)
OLAP	operations	generate	summaries	of	historic	data	and	aggregate	data
from	multiple	sources.	OLAP	operations	are	designed	to	generate	report-type
summaries	and	enable	users	to	slice,	dice,	and	pivot	data	in	a	data	warehouse
using	a	predefined	set	of	dimensions	on	the	data,	such	as	sales	by	stores,	sale
by	quarter,	and	so	on.	Contrast	with	Online	Transaction	Processing
(OLTP).

Online	Transaction	Processing	(OLTP)
OLTPs	are	designed	for	short	online	data	transactions	(such	as	INSERT,
DELETE,	UPDATE,	etc.)	with	an	emphasis	on	fast	query	processing	and
maintaining	data	integrity	in	a	multi-access	environment.	Contrast	with
OLAP	systems,	which	are	designed	for	more	complex	operations	on	historic
data.

Operational	Data	Store	(ODS)
An	ODS	system	integrates	operational	or	transactional	data	from	multiple
systems	to	support	operational	reporting.

Prediction
In	the	context	of	data	science	and	machine	learning,	the	task	of	estimating
the	value	of	a	target	attribute	for	a	given	instance	based	on	the	values	of
other	attributes	(or	input	attributes)	for	that	instance.

Raw	Attribute
An	abstraction	from	an	entity	that	is	a	direct	measurement	taken	from	the
entity—for	example,	a	person’s	height.	Contrast	with	derived	attribute.

Regression	Analysis
Estimates	the	expected	(or	average)	value	of	a	numeric	target	attribute	when
all	the	input	attribute	values	are	fixed.	Regression	analysis	assumes	a
parameterized	mathematical	model	of	the	hypothesized	relationship	between
the	inputs	and	output	known	as	a	regression	function.	A	regression	function
may	have	multiple	parameters,	and	the	focus	of	regression	analysis	is	to	find
the	correct	settings	for	these	parameters.

Relational	Database	Management	System	(RDBMS)
Database	management	systems	based	on	Edgar	F.	Codd’s	relational	data



model.	Relational	databases	store	data	in	collection	of	tables	where	each
table	has	a	structure	of	one	row	per	instance	and	one	column	per	attribute.
Links	between	tables	can	be	created	by	having	key	attributes	appear	in
multiple	tables.	This	structure	is	suited	for	SQL	queries	which	define
operations	on	the	data	in	the	tables.

Smart	City
Smart-city	projects	generally	try	to	integrate	real-time	data	from	many
different	data	sources	into	a	single	data	hub,	where	they	are	analyzed	and
used	to	inform	city-management	and	planning	decisions.

Structured	Data
Data	that	can	be	stored	in	a	table.	Every	instance	in	the	table	has	the	same	set
of	attributes.	Contrast	with	unstructured	data.

Structured	Query	Language	(SQL)
An	international	standard	for	defining	database	queries.

Supervised	Learning
A	form	of	machine	learning	in	which	the	goal	is	to	learn	a	function	that	maps
from	a	set	of	input	attribute	values	for	an	instance	to	an	estimate	of	the
missing	value	for	the	target	attribute	of	the	same	instance.

Target	Attribute
In	a	prediction	task,	the	attribute	that	the	prediction	model	is	trained	to
estimate	the	value	of.

Transactional	Data
Event	information,	such	as	the	sale	of	an	item,	the	issuing	of	an	invoice,	the
delivery	of	goods,	credit	card	payment,	and	so	on.

Unstructured	Data
A	type	of	data	where	each	instance	in	the	data	set	may	have	its	own	internal
structure;	that	is,	the	structure	is	not	necessarily	the	same	in	every	instance.
For	example,	text	data	are	often	unstructured	and	require	a	sequence	of
operations	to	be	applied	to	them	in	order	to	extract	a	structured
representation	for	each	instance.

Unsupervised	Learning
A	form	of	machine	learning	in	which	the	goal	is	to	identify	regularities	in	the
data.	These	regularities	may	include	clusters	of	similar	instances	within	the
data	or	regularities	between	attributes.	In	contrast	to	supervised	learning,	in
unsupervised	learning	no	target	attribute	is	defined	in	the	data	set.
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